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Low clouds are one of the 
largest source of uncertainty
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3. Less low cloud fraction
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Improve low cloud representation

↓

Better predictions 
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More relevant global climate models
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Thanks for listening!
dm575@exeter.ac.uk
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Catch me in the 

social session at 6 or 

drop me an email!

Other interests/ 

talking points:

- Climate 

visualisation

- Model 

development

- Mars’ climate

!
Visit to see 

this cool gif

1.  Correlative analysis proposes that: increased tropical warming → less subtropical LCF

2.  With causal experiments, we directly test individual stages of the hypothesised pathway

3.  We find that, in the subtropics: 
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“Cloud feedback — the change in cloud-induced top-of-atmosphere radiation anomalies with global warming — is 

the primary driver of differences in effective climate sensitivity (ECS) across global climate models (GCMs)”

“In the tropics, it is in regimes of large-scale subsidence, where marine boundary layer clouds prevail, that the 

radiative response of clouds to a change in surface temperature (1) differs most in climate change among models 

and (2) disagrees most with observations in the current climate.”

Bony et al., 2005

“Cloud feedback—the change in top-of-atmosphere radiative flux resulting from the cloud response to warming—

constitutes by far the largest source of uncertainty in the climate response to CO2 forcing simulated by global 

climate models (GCMs)”

Ceppi et al., 2017

“Regardless of approach, the total cloud feedback is the key quantity driving the uncertainty, since other feedbacks 

are well constrained by multiple lines of evidence supported by good basic physical understanding.”

Sherwood et al., 2020

Zelinka et al., 2022
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