EGU General Assembly 2024 Thursday 18/04/2024

#### Spatial downscaling of CAMS surface pollutants using Machine Learning

Athanasios Tsikerdekis<sup>1</sup>, Michael Tsikerdekis<sup>2</sup> and Henk Eskes<sup>1</sup>

1. Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands 2. Western Washington University, Bellingham, WA, USA



Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

## **Motivation**

Can we go from global (~40km) to regional (10km) resolution with ML?

#### Assumption:

Surface concentration of a pollutant correlates with various meteorological, emission and surface characteristics

#### Data availability:

Since the final goal will be to use the algorithm globally for surface pollutants, the <u>inputs</u> need to be:

- Available globally in 10km.
- Operationally created
- Provided as a forecast in NRT





#### **Motivation**

Can we go from global (~40km) to regional (10km) resolution globally for "free" (computationally) ?



## A simplified Convolutional Neural Network (CNN) structure

A CNN is a deep learning architecture designed specifically for processing structured grid-like data, such as images or spatial data. It combines several Input in order to predict (Output) a Target. The Input, Output and Target are pictures or model domains of N x N pixels or grid cells respectively.



# Toy model for spatial downscaling





## Input Data

#### Meteorology (10 km) ECWMF operational forecast

#### Emissions (10 km) CAMS global

Future plans to use landuse as input

Surface Concentration (40km)

**ENSEMBLE** of CAMS regional

Interpolated from  $10 \text{km} \rightarrow 40 \text{km} \rightarrow 10 \text{km}$ (fine scale details are lost)





#### Data

220

#### Splitting data into training and testing



## Results: Prediction for a specific timestep (09:00 UTC)



## Results: Prediction for a specific timestep (09:00 UTC)





## Results: Prediction for a specific timestep (09:00 UTC)





KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

# Results: Daily cycle is preserved

Spatial Similarity Index Structure (Wang et al. 2014) Target Coarse = 0.966

Prediction = 0.968



# Results: Evaluation statistics (MNMB) $\longrightarrow \frac{1}{N} \sum_{i=1}^{N} \frac{M_i - O_i}{O_i + M_i}$



KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

# Results: Evaluation statistics (FGE) $\longrightarrow \frac{1}{N} \sum_{i=1}^{N} \frac{|M_i - O_i|}{O_i + M_i}$



KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

#### Results: Evaluation using EEA observations (FGE)



NMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

# Conclusions & Future plans

Trained a CNN to spatially downscale CAMS NO $_2$  surface concentration from 40 km to 10 km.

#### Lessons Learned

- Successfully gained some high resolution features, through not everywhere.
- No improvement compared to EEA stations. Alternative set up to consider surface observations (?)

#### Future plans

- Transition to a GPU framework (train on more days, on other CAMSr model, cross-validation).
- Input importance analysis (e.g. Shapley Additive exPlanations).
- Use surface (EEA) or satellite observations (e.g. TROPOMI NO2 tropospheric column).
- Test the prediction of other species (e.g. PM2.5).
- Explore other scoring options that prioritize more the gain of fine scale details.
- Apply the trained model using CAMS global to a region outside of Europe.



#### Backup slides



KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

# Machine Learning in Geoscience

An exponential increasing trend

#### Machine learning papers in geoscience A sample of 242 papers published before 2018



Jesper Sören Dramsch 2020, Advances in Geophysics https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500415/

#### ML/AI publication on our field

Keywords: 'machine learning', 'artificial intelligence', 'meteorology', 'climate', 'geoscience'



Source: Google Scholar thanos.tsikerdekis@knmi.nl

#### Data

#### Input, output and pre-processing of data

- **TARGET:** NO<sub>2</sub> Surface concentration in 10km
- **OUTPUT:** Predicting NO<sub>2</sub> Surface concentration in 10km
- INPUT :

| ECMWF HRES<br>Forecast        | 0 | Meteorology (10km): Visibility, Specific Humidity at 2m,  |                                                                                 |  |  |  |  |  |  |
|-------------------------------|---|-----------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
|                               |   | Temperature a                                             | t 2m, Mean Sea Pressure, Boundary Layer Height, Total                           |  |  |  |  |  |  |
|                               |   | Cloud Cover, U and V components of the wind at 10m, Total |                                                                                 |  |  |  |  |  |  |
| CAMS global                   |   | Precipitation Rate                                        |                                                                                 |  |  |  |  |  |  |
|                               | 0 | Emissions                                                 | (10km): For NO <sub>2</sub> from 12 different sectors                           |  |  |  |  |  |  |
| CAMS regional<br>Interpolated | 0 | Land                                                      | (10km): Topography and Road Density                                             |  |  |  |  |  |  |
|                               | 0 | Concentration                                             | (40 km): NO <sub>2</sub> , NO, O <sub>3</sub> , PM2.5, PM10 and SO <sub>2</sub> |  |  |  |  |  |  |

\*\*\* Temporal frequency of each variable differs from hourly to constant in time. \*\*\* Normalize input before training



#### CNN (Convolutional Neural Network)

A CNN is a deep learning architecture designed specifically for processing structured grid-like data, such as images or spatial data. It combines several Input in order to predict (Output) a Target. The Input, Output and Target are pictures or model domains of N x N pixels or grid cells respectively.



#### **Convolution Layer**

Convolutions extract features from the input data, each using filters to detect patterns.





#### Filter

Each filter is a small-sized matrix of composed by combining different inputs and learnable weights.



#### Weights

Parameters that are adjusted during training to minimize the difference between predicted and actual values, typically through techniques like backpropagation or gradient descent.





#### Kernel size

Determines the spatial extent of the features to be detected. Larger kernel sizes (e.g. 9x9) capture broader features, while smaller ones (3x3) capture finer details, influencing the scale of patterns the model can detect.



#### **Activation function**

Apply in each filter (element-wise) a ReLU function that sets negative values to zero and leaves positive values unchanged. This introduces non-linearity into the network.



#### Feature Mask

The values in the feature map represent the outputs of the filter across the entire input data



#### Loss Calculation

Loss between the Output (Prediction) and the Target based on a Loss Function (e.g. MSE, MAE etc).



#### Backpropagation

Computes the gradient of the loss with respect to the model's parameters backwards layer by layer.



#### Experiments

| Exρ | CNN Structure                      | Epochs      | Learning Rate | Train/Test Size | Loss Function | Train Min Loss | Test Min Loss |
|-----|------------------------------------|-------------|---------------|-----------------|---------------|----------------|---------------|
| 1   | L64-L1                             | 1000 + 1000 | 0.001         | 312 / 48        | MSE           | 3.22           | 5.67          |
| 2   | L64-L1                             | 30          | 0.001         | 312 / 48        | MSE           | 6.23           | 8.39          |
| 3   | L64-L128-L64-L1                    | 30          | 0.001         | 312 / 48        | MSE           | 4.64           | 6.64          |
| 4   | L64-L128-L256-L128-L64-L1          | 30          | 0.001         | 312 / 48        | MSE           | 3.78           | 6.06          |
| 5   | L64-L128-L256-L128-L64-D0.5-L1     | 30          | 0.001         | 312 / 48        | MSE           | 4.08           | 5.97          |
| 6   | L64-L128-L256-L128-L64-D0.5-L1     | 30          | 0.001         | 312 / 48        | HL            | 0.68           | 0.96          |
| 7   | L64-L128-L256-L128-L64-D0.5-L1     | 30          | 0.001         | 312 / 48        | MAE           | 1.00           | 1.30          |
| 8   | L256K5-L32K1-L32K3-L256K1-L1K9     | 30          | 0.001         | 312 / 48        | MAE           | 1.04           | 1.36          |
| 9   | L64-L128-L256-L128-L64-D0.5-L1     | 100         | 0.001         | 312 / 48        | MAE           | 0.70           | 1.25          |
| 10  | L64-L128-L256-L128-L64-D0.5-L1     | 100         | 0.001         | 936 / 144       | MAE           | 0.56           | 1.29          |
| 11  | L64-L128-L256-L128-L64-D0.5-L1_OBS | 30          | 0.001         | 312 / 48        | MAE           | 1.01           | 1.33          |



#### Should I train a CNN forever = many many epochs?

Does not make a difference after a point, especially for the testing data + you are overfitting...



KNMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

### Should I use a more complex CNN?

Yes, since it can learn more complex connection between the input





#### Can I somehow restrain overfitting?

Dropout layer: Small changes but clearly worse training and better testing loss





#### What about other timesteps? Is the diurnal cycle correct?

Since target coarse is used as input, the diurnal cycle is retained.



#### Testing other CNN structures: FSRCNN structure

At the moment does not provide much better results

Testing a known CNN structure (FSRCNN)



experiment - Exp7 ---- Exp8 variable - training - validation



#### Should I use more data for training?

At this state (current inputs), tripling inputs provide the same testing loss and lower training loss





# Adding "observations" as input?

Using the dense EEA network of stations over Europe as input is not improving results





### Results: Evaluation using EEA observations (MNMB)



NMI Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management