

Nejla Eco – LATMOS PhD student email : nejla.eco@latmos.ipsl.fr







CO total column x10<sup>18</sup> molecules/cm<sup>2</sup>

- spectra big data set



## Towards retrieval of CO from MTG-IRS in the Fourier space with IASI as a demonstrator

### Nejla Eco<sup>1</sup>, Sébastien Payan<sup>1</sup>, and Laurence Croizé<sup>2</sup>

<sup>1</sup>LATMOS, Sorbonne Université, Paris, France <sup>2</sup>DOTA, ONERA, Université Paris Saclay (Palaiseau), France

### Carbon monoxide

incomplete combustion of carbon-containing substances

### Fig. 1 : Map of column density of CO<sup>1</sup>

[George et al., 2015, doi: 10.5194/amt-

# 3. Classification

- Explore potential of deep learning with interferogram instead of spectra
- Investigate and remove the dependency on surface temperature and the H<sub>2</sub>O content
- Point A sensitive to surface temperature
- Point B sensitive to slight column density of  $H_2O$







### 129360 simulated interferograms

Classification applied to CO

- Near-to-real-time maps of column density from IASI
- Apply the same principle to the MTG-IRS data
- New mission design on PSI retrieval approach

### 5. Prospects

- On-board High Altitude Platforms System
- o Increased persistence of observation