Climate change, water resources and the hydropower system in Iceland

Supplemental

EGU, Vienna, Austria & Online | 14–19 April 2024

Innovation in Hydropower Operations and Planning to integrate Renewable Energy Sources and optimize the Water-Energy Nexus | PICO

Andri Gunnarsson¹, Hörður B. Helgason¹, Óli G. B. Sveinsson¹, Gunnar G. Tómasson¹

¹Landsvirkjun, Hydropower Division, Katrínartún 2, 105 Reykjavík, Iceland

Energy System in Iceland

Based on 100% renewable resources

Electricity generation

>>>	72%	Hydro (1908 MW)
>>>	28%	Geothermal (742 MW
» <	< 0.1%	Wind (4 MW)

- » +80% power intensive load (high base power)
- » No interconnections
- » Hydrological variability dominates inflow energy variability

Water resources in Iceland

5 main hydro catchments

- Highland catchments cover 13% of Iceland
- >> 23% glaciated (~50% of inflow energy)
- >> Seasonal snow (~15% of inflow energy)
- » Recent hydrological changes
 - >> Less seasonal snow
 - >> Increased glacier melt

» Driven by natural variability and climate change

Adapting hydro to current and future climates

Recent changes

- In Iceland, significant warming has occurred since the beginning of the 20th century,
 - »~1.0 °C per century, for the period from 1900 -2020.
 - » More pronounced during winter (1.4 °C per century)
 - » Less during summer (0.7 °C per century).
- > Annual mean precipitation has increase from 1500 mm on average during the last century to approx. 1600 - 1700 mm
- > Icelandic glaciers have gradually been losing mass and area in recent decades
- » At present, the accumulated mass loss since the end of LIA
- > 16% of the LIA glacier mass
- » ½ total mass change has occurred post 1994.

Tungnaárjökull glacier

Icelandic glaciers: Since ~1890 lost 2.300 km² of area Since 1995 ~ 8% of volume (275 km³)

2023

Future changes

All scenarios agree on future warming Less pronounced signals for precipitation changes

Model averages

7

Future changes of glaciers

8

Example: Inflow changes 1960 – 2050 Jökulsá á Dal (Hálslón)

Increased glacier melt provides opportunities Glacier melt runoff increase for Brúarjökull in NE-Vatnajökull

