ACIC@

ADVANCED
CEOCCIINCE
INSTRUMENTS INSTRUMENTS
COMPANY

František Hroudal ${ }^{1,2}$, Martin Chadimal, ${ }^{\text {, }}$, Josef Ježek ${ }^{2}$
${ }^{1}$ ACICO Inc., Brno, Czech Republic, hrouda@agico.cz
${ }^{3}$ Institute of Ceology of the Czech Academy of Sciences, Prague, Czech Republic
www.agico.cz

Study Purpose	Principles of High Field Anisotropy	Precision of AMR Measurement	Relationship between Measuring Error and AMR	Instrumentation
\square Final goal of the present investigation is to develop a technique for measurement of the Anisotropy of High Field Magnetic Remanence (hf-AMR) f rocks and minerals. \square Measurement of hf-AMR is not a single measuring process, it consists of several separated procedures as demagnetization, impulse magnetization, measurement of remanent magnetization, processing of measurement it is mporent. It is susceptibility (remanebility), which dominantly controls the accuracy of letermination of hf-AMR, through the above technique. This is the purpose of the present poster. \square There are two techniques for determination of AMR, the vectorial and projection ones. This poster exclusively deals with the latter.	Theory of the low-field AMS is based on assumption of linear relationship between magnetization and magnetizing field, traditionally described as $\boldsymbol{M}=\mathbf{K} \boldsymbol{H}$ where \boldsymbol{M} is magnetization vector, \boldsymbol{H} is field intensity vector, and \mathbf{K} is symmetric second-rank tensor of magnetic susceptibility. The anisotropy of magnetic remanence (AMR) is defined analogously (e.g., Jackson, 1991) $\boldsymbol{M}_{R}=\mathbf{R} \boldsymbol{H}$ where \boldsymbol{M}_{R} is remanent magnetization vector and \mathbf{R} is second-rank tensor called remanence susceptibility tensor (Jackson, 1991) or remanebility tensor (Jelínek, 1993). As the AMR requires relatively strong fields, in which remanence is a nonlinear function of the field intensity, M_{R} and H are not in general related by a second-rank tensor. Nevertheless, the AMR can still, in many cases, be described by a symmetric second-rank tensor $\boldsymbol{M}_{R}=\mathbf{R} \boldsymbol{H}_{\mathrm{u}} f(H)$ $\begin{aligned} & \text { where } f(H) \text { describes the non-linear field dependence and } \boldsymbol{H}_{\mathrm{u}} \text { is the unity vector } \\ & \text { parallel to the field vector (e.g., Jackson, 1991; Hrouda, 2002). } \end{aligned}$ parallel to the field vector (e.g., Jackson, 1991; Hrouda, 2002).	The basic parameter characterizing the precision of the AMR measurement is analogous to that of AMS, being called the Standard Error of Directional $\begin{aligned} & \text { emanebility (Jelínek, 1977) } \\ & \qquad s=\sqrt{\frac{1}{n-6} \sum_{i=1}^{n}\left(R m_{i}-R f_{i}\right)^{2}} \end{aligned}$ where $\left(R m_{i}\right)$ is remanebility measured in i-th direction, $R f_{i}$ is remanebility in the same direction calculated from the fitted tensor and n is number of measuring directions. In rotatable designs of measuring directions, the standard error of principal remanebilities is equal for all three principal values and given as $\mathrm{s}_{k}=\mathrm{s}$ $\sqrt{6 / n}$. The error, $S=s / R_{m}$ (R_{m} is mean remanebility), is called Relative Standard P and T can then be calculated using the error propagation law (e.g., Hrouda et al., 2023). The error angles in determining the principal directions are parallel to the principal planes of the AMR ellipsoid. For example, the error angle in the R_{1}, R_{2} plane is: $E_{12}=\operatorname{atan}\left[s /\left(2 / R_{1}-R_{2} /\right)\right]$. The other two angles $\left(E_{23}, E_{13}\right)$ are defined analogously, $E_{23}=\operatorname{atan}\left[s /\left(2\left\|R_{2}-R_{3}\right\|\right), E_{13}=\operatorname{atan}\left[s /\left(2\left\|R_{1}-R_{3}\right\|\right)\right.\right.$. In addition, the Standard Error of Directional Remanebility equals the Measuring Error, s, defined as standard deviation of normally distributed repeated directional measurements. The relative measuring error is $\mathrm{s}_{\mathrm{r}},=\mathrm{s} / R_{m}$.	The standard error of anisotropy degree, $\Delta P, \quad\left(P=R_{1} / R_{3}\right.$ where $R_{1}>R_{2}>R_{3}$ are principal remanebilities) virtually linearly error. If one considers the maximum acceptable error $\Delta P=0.01$ for $P=1.1$, $\Delta P=0.05$ for $P=1.5$, and $\Delta P=0.1$ for $P=2$, the relative standard error (measuring and 0.04 , respectively. In case of $P=1.1$ and $E_{12}<5^{\circ}$, measuring error should be $\sigma_{\mathrm{r}}<0.015$ In cases of $P=1.5, P=2$ and $\mathrm{E}_{12}<5^{\circ}$, the $\sigma_{\mathrm{r}}<0.05$.	
PUMA Impulse Magnetizer	Experiments, 1st Set	Experiments, 2nd Set	Experiments, 3rd Set	Comparison of hf-AMR and AMS
\checkmark Impulse magnetization $\checkmark 1 \mathrm{mT}-5000 \mathrm{mT}$ (5 Tesla) $\checkmark 18$ magnetization directions $\checkmark 1$ inch cylinders or $20 / 23 \mathrm{~mm}$ cubes User friendly software	Purpose: Find out variation of RM after repeated magnetizing in one direction. Materia	Purpose: Testing whether specimen remagnetization after changing direction is complete Tumble demag to $10^{-3} \mathrm{~A} / \mathrm{m}$ was made before each experiment, not between the In all experiments, 3 impulse magnetization. Exp. 4: magnetization parallel to $-Z$ axis. Exp. 5: magnetization parallel to $+Y$ axis. Exp. 6: magnetization parallel to $-Z$ axis Exp. 7: magnetization parallel to $-Y$ axis. Exp. 8: magnetization parallel to $+X$ axis. Relative Error (RMS/Mean) is mostly (except Exp. 5) less than $0.002(0.2 \%)$, Dmax is about 0.5\% Virtually Complete Remagnetization.	Purpose: Testing specimens with natural magnetite. Tumble AF dura Magnetite (Kiruna) disseminated in Plaster of Paris. In both experiments, 3 impuls Exp. 9: specimen PS1/2, magnetization paralle Exp. 9 . to Z axis. Exp. 10: specimen, PS3/1, magnetization parallel to Z axis. Relative Error (RMS/Mean) is less than 0.005 (0.5%), Dmax is 1% and 0.3%.\qquad A / m A / m percentage A / m Exp. 9 0.282 0.0012 0.0043 0.0106 Exp. 10 0.3226 0.0005 0.0017 0.0031 Exp. 9 Reasonable Reproducibility.	Even though remanence and susceptibility are different physical entities, it would be useful whose magnetism is carried by only one mineral (magnetite) is used for this purpose. Principal directions obtained by both techniques are very similar. This is expectable because in magnetite both AMR and AMS are controlled by the demagnetizing factor (grain shape) Larger differences are in the degree of anisotropy. This is also expectable because the control by the demagnetizing factor slightly differs in both cases
ACICO 18 vs. Girdler 9 Measuring Designs	Conclusions	Potential Rock Fabric Implications	References	Acknowledgement
Manual measurement of hf-AMR is rather laborious (automatic one has not been design. Girdler design of 9 directions is much faster (about half an hour) but provides us theoretically with less precised in Experiments, $3^{\text {rd }}$ set, and measured them in Agico 18 design. From these measurements we also separated two data sets by 9 directions and Girdler 9-1 and Girdler 9-2. The results are in the attached Table. One can preliminarily conclude that the 9 directions design, which saves .	The measurement of hf-AMR is a rather complex procedure, consisting of initial demagnetization, impulse magnetization, measurement of remanent magnetization processing of measurement, theoretically implying much less precision than the simple measurement (in one step) of standard AMS. Our investigations have shown that in spite of this, the accuracy in determination of directional remanebility can be comparable to that of directional susceptibility provided that one disposes a high-field magnetizer equipped with precise and repeatable field adjustment and producing relatively homogeneous magnetic field within sample holder. In addition, the remanence must be measured with high accuracy instrument Our investigations have shown that repeated magnetizing and consequent measurement of remanence gives only very weakly variable results. This indicates Using 18 directions and 9 directions measuring designs provides us with similar results in determination of hf-AMR tensor, only confidence intervals in anisotropy parameters and angles are substantially narrower in the former case than in the latter. This results from different degrees of freedom of both designs.		Girderer R.W, , 1961. The measurement and computation of fanisotropy of magnetic suscepetbilility of rocks. Geophys., ... astr. Soc.,5, 34.44. Hroudaf, 2002 . The use of the anisotoropy of magnetic remnence in the resolution of the eninsotropy of magnetic cuscepetibility into its lerromangeticand paramagnetic components sectoon $269 \cdot 281$. - Hrouda, F . Jeeiek, J., Chadima, M., 2023 . The effect of fotatability of measuring directions desigig on the precision of the determination of the anisotropyof magnetic suseeposibility: Mathematical model study. Phys. Earth Planet. Inter. $349,107159$. - Jackson, M., 1991. Anisotropy of magnetic remnenence: a brief review of mineralogical sources, physical origins, and geologicila appicictions, and comparison with susceptibility anisotropy. PAGGOPH, 1366.1 .28. - Jelinek,, , 1977. The statistical thery of measuring anisctropy of magnetic susceptibility y focks and its application. Geofyzike Brno. 37, 124-134.	Our colleagues, Drs. Zuzana Roxerová and Prokop Závada of the Czech Academy of Sciences, are thanked for providing us with artificial specimen consisting of magnetite disseminated in Plaster of Paris.

