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Abstract

Low-pressure systems and strong winds can generate severe storm tides, leading to coastal flooding and significant economic

losses. Accurate estimates of storm tide frequency and intensity are crucial for flood hazard assessments and risk reduction.

However, the limited observational records pose a challenge in estimating high return periods with low uncertainty. In this

study, we evaluate the potential of pooling ensembles from the SEAS5 seasonal forecast archive to generate an extensive storm

tide dataset for robust return period estimates in extra-tropical regions at large spatial scale. Using SEAS5 to force the

hydrodynamic model GTSM, we generate 525 synthetic years of storm tides and apply extreme value analysis to estimate

40-year and 500-year return periods. Our findings demonstrate that SEAS5 produces unbiased and independent synthetic mean

sea level pressure events across major extra-tropical regions, including Europe, China, Russia, South America and Australia.

In Europe, unbiased SEAS5-derived storm tide extremes along the Atlantic coast are particularly well-suited for return period

analysis. The results show the benefits of using longer records to improve extreme return periods. SEAS5 not only reduces

uncertainties in high return period estimates but also provides more extreme events, enhancing the reliability of extreme value

distributions compared to short observational records.
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Key points 11 

• Using ensemble pooling of a seasonal forecast archive with a hydrodynamic model to 12 

extend the sample size of storm tide extremes 13 

• The ECMWF seasonal forecast archive can generate unbiased, independent storm 14 

tide events in several extra-tropical regions 15 

• The 525 synthetic years of storm tides generated reduce uncertainty in extreme 16 

return periods at the European scale 17 

  18 
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Abstract 19 

Low-pressure systems and strong winds can generate severe storm tides, leading to coastal flooding 20 

and significant economic losses. Accurate estimates of storm tide frequency and intensity are crucial 21 

for flood hazard assessments and risk reduction. However, the limited observational records pose a 22 

challenge in estimating high return periods with low uncertainty. In this study, we evaluate the 23 

potential of pooling ensembles from the SEAS5 seasonal forecast archive to generate an extensive 24 

storm tide dataset for robust return period estimates in extra-tropical regions at large spatial scale. 25 

Using SEAS5 to force the hydrodynamic model GTSM, we generate 525 synthetic years of storm tides 26 

and apply extreme value analysis to estimate 40-year and 500-year return periods. Our findings 27 

demonstrate that SEAS5 produces unbiased and independent synthetic mean sea level pressure 28 

events across major extra-tropical regions, including Europe, China, Russia, South America and 29 

Australia. In Europe, unbiased SEAS5-derived storm tide extremes along the Atlantic coast are 30 

particularly well-suited for return period analysis. The results show the benefits of using longer 31 

records to improve extreme return periods. SEAS5 not only reduces uncertainties in high return 32 

period estimates but also provides more extreme events, enhancing the reliability of extreme value 33 

distributions compared to short observational records.  34 

Plain Language Summary 35 

During storms, extreme sea levels can be caused by low pressure and strong winds. Understanding 36 

how often these extreme sea levels occur and how intense they are is crucial for effective coastal 37 

flood risk management. However, the probabilities of extreme sea levels beyond the available 38 

observational data are highly uncertain. In this study, we present an approach to reduce that 39 

uncertainty. Seasonal forecasts, which predict the weather and climate few months ahead, are 40 

typically used  in agriculture, water resources and energy demand applications. In our work, we 41 

explore a new way to use these forecasts by combining them with a model to simulate sea levels. We 42 

pool together multiple seasonal forecast simulations, allowing us to generate a larger dataset of 43 

plausible extreme sea levels, including events that may not have occurred yet. With more data, we 44 

can better estimate the probabilities of extreme sea levels, leading to improved coastal flood risk 45 

assessments and more effective adaptation and mitigation strategies. 46 

1 Introduction 47 

Extreme sea levels, driven by storm tides, can cause severe coastal flooding, economic losses, and 48 

threats to life, particularly in low-lying areas. Historical high-impact storm tide events include 49 

Tropical Cyclone Harvey, which caused 125 billion U.S. dollars in damages in 2017 (Sebastian et al., 50 

2021), storm Xynthia, which hit France in 2010 resulting in 2.5 billion euros in damages (CGEDD, 51 
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2010) and the “Pasha Bulker” storm, which hit the east coast of Australia in 2007, causing 10 deaths 52 

and 1.4 billion Australian dollars in damages (Dowdy et al., 2013). Reliable estimates of storm tide 53 

frequency and intensity are essential for developing flood hazard assessments that help implement 54 

risk reduction and adaptation measures. 55 

Large-scale coastal flood risk assessments typically rely on extreme value analysis (EVA) of observed 56 

or modelled extreme sea levels to estimate return periods beyond the observational record (Dullaart 57 

et al., 2021; Menéndez & Woodworth, 2010; Wahl et al., 2017). Storm tide observations are usually 58 

obtained from tide gauge records (Haigh et al., 2023). However, these records vary significantly in 59 

spatial coverage, are often short in duration, and may fail to record extreme storm events. To 60 

address these limitations, storm tide datasets can be derived from models driven by meteorological 61 

inputs from reanalysis data (Muis et al., 2016; Rose et al., 2024). While these datasets offer more 62 

globally consistent sea level information, reliable global observational records of key meteorological 63 

inputs (i.e. wind and pressure), validated and assimilated with satellite data, extend only about 40 64 

years (Hersbach et al., 2019).  65 

Applying EVA methods to such short records and extrapolating beyond observational data introduces 66 

significant uncertainties, particularly for extreme return periods (van den Brink et al., 2004). An 67 

alternative approach to traditional observation-based EVA involves using synthetic datasets, which 68 

expand the sample size and allow for more robust statistical analysis. Several methods exist to 69 

generate synthetic datasets. Fully statistical approaches, such as copulas, max-stable models, or the 70 

conditional multivariate exceedance model by Heffernan & Tawn (2004), create synthetic events 71 

based on observed or modelled sea levels (Li et al., 2023; Rashid et al., 2024). These approaches are 72 

computationally efficient and have evolved to incorporate spatiotemporal correlations. While they 73 

can expand the sample size of extreme events, they still rely on extreme value techniques, meaning 74 

they do not fully resolve the uncertainty in estimating extremes beyond observations. 75 

Hybrid approaches use statistical methods to derive synthetic meteorological datasets, which are 76 

then used to force hydrodynamic models (e.g. Lin & Chavas, 2012). These approaches have been 77 

successfully applied in previous studies, where global synthetic datasets for tropical cyclones 78 

(Bloemendaal et al., 2020; Emanuel et al., 2006; James & Mason, 2005; Lee et al., 2018) have been 79 

used to drive storm tide models (Benito et al., 2024; Dullaart et al., 2021; Haigh et al., 2014; Marsooli 80 

et al., 2019). However, no equivalent synthetic meteorological dataset currently exists for simulating 81 

synthetic storm tides in extra-tropical regions. As a result, global estimates of return periods for 82 

storm tide levels in these regions rely on approximately 40 years of reanalysis data (Hersbach et al., 83 

2019), leading to substantial uncertainties for extreme return periods.  84 
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Physically-based approaches offer an alternative for generating synthetic meteorological forcing 85 

datasets in extra-tropical regions. These approaches use large-ensemble climate models to drive 86 

hydrodynamic models. Although more computationally expensive than fully statistical approaches, 87 

these methods can capture the physical principles of atmospheric processes and storm tide 88 

dynamics. Howard & Williams (2021), for example, used a 483-year present-day simulation from the 89 

HadGEM3-GC3-MM climate model to generate synthetic storm surges for the UK. Other studies used 90 

pooling techniques across climate models (Meucci et al., 2020) or model ensembles to construct 91 

synthetic datasets (Breivik et al., 2014; Thompson et al., 2017). One example of such a method is the 92 

UNSEEN (UNprecedented Simulated Extremes using Ensembles) approach (Thompson et al., 2017), 93 

which has been applied, among others, to estimate the likelihood of extreme precipitation in the UK 94 

(Thompson et al., 2017) and fluvial floods in Europe (Brunner & Slater, 2022). 95 

Large ensembles of climate variables are typically derived from climate models (Howard & Williams, 96 

2021; Meucci et al., 2020; Thompson et al., 2017), though they often present significant biases 97 

(Eyring, Righi, et al., 2016; C. Wang et al., 2014). An alternative physics-based approach for 98 

generating synthetic extreme events is through the use of seasonal forecast archives. These forecasts 99 

simulate realistic atmospheric phenomena while capturing weather variability with their various 100 

ensemble members. One such archive is the fifth-generation European Centre for Medium-range 101 

Weather Forecasts (ECMWF)’s SEAS5, which provides 7-month forecasts initialised every month 102 

(ECMWF, 2021). Traditionally, seasonal forecasts have been used to predict weather and climate 103 

patterns over several months, supporting applications in agriculture, water resources and energy 104 

demand, among others (Dessai & Bruno Soares, 2013). However, their limited predictive skill beyond 105 

certain lead times makes their archived simulations useful for generating independent and unbiased 106 

event sets. As a result, seasonal forecast archives are well-suited for generating synthetic events that 107 

expand the sample size of extreme events (Kelder et al., 2020; Kelder, Marjoribanks, et al., 2022). 108 

Additionally, the spatiotemporal resolution of seasonal forecasts allows them to capture synoptic-109 

scale storms, which typically drive extreme sea levels in extra-tropical regions (ECMWF, 2021). This 110 

capability makes them suitable to drive storm tide simulations.  111 

The UNSEEN approach has been successfully applied together with SEAS5 to estimate the 112 

probabilities of extreme precipitation events  (Kelder et al., 2020; Kelder, Marjoribanks, et al., 2022). 113 

In the context of extreme sea levels, Van den Brink et al. (2004) used ensemble pooling techniques 114 

on an earlier version of the ECMWF’s seasonal forecast archive to reduce statistical uncertainty of 115 

10,000-year surge level estimates for a coastal location in the Netherlands.  116 
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Our study investigates the potential of using seasonal forecast archives for generating extended 117 

storm tide events sets, enabling more robust large-scale return period estimates in extra-tropical 118 

regions. First, we evaluate if SEAS5 can be used for generating independent and unbiased events by 119 

validating the mean sea level pressure against ERA5. Results show that SEAS5 meets the bias and 120 

independence criteria in Europe, making it the focus of our further analysis. Second, we simulate 525 121 

years of storm tides for Europe by forcing a regional cut-out of the Global Tide and Surge Model 122 

(GTSM) with SEAS5’s re-forecast wind and pressure fields. We then evaluate biases in the simulated 123 

storm tides by comparing against ERA5 simulations with the same model setup.  Third, we conduct a 124 

statistical analysis to compare storm tide return periods and uncertainties between SEAS5’s 525 125 

synthetic years and ERA5’s ~40 years. 126 

2 Methods 127 

2.1 General approach 128 

Figure 1 provides an overview of the methodological framework of this study, which consists of three 129 

main steps. First, in Section 2.2, we assess if SEAS5 can be used for generating unbiased and 130 

independent extreme events (Figure 1, red panel). This global-scale assessment includes a test to 131 

evaluate SEAS5’s ability to represent unbiased mean sea level pressures (Section 2.2.1) and an 132 

independence test to ensure that the number of extreme events is not influenced by an initial 133 

climate state, which could introduce biases in extreme value estimates (Section 0). These tests are 134 

applied to both the re-forecast period (1981 – 2016) and the forecast period (2017 – 2023) of SEAS5, 135 

and help us identify regions and time frames where SEAS5 can be used for the generation of reliable 136 

synthetic events. Based on these findings, we focus the remainder of the analysis in Europe, where 137 

SEAS5 performs particularly well (Figure 1 blue panels).  138 

Second, we perform storm tide modelling for Europe using 10 m wind components and mean sea 139 

level pressure fields from SEAS5’s re-forecast and ERA5 to force a regional cut-out model of GTSM 140 

(Section 2.3). Third, we construct 525 synthetic years by pairing SEAS5 storm tide time series per 141 

ensemble member. We evaluate biases in the timeseries and apply two EVA approaches to compare 142 

the robustness of high-return-period storm tide estimates derived from SEAS5 and ERA5 (Section 143 

2.4).  144 
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Figure 2. Visualisation of the workflow to calculate independence: (a) For a specific lead time and grid cell, 198 
monthly minimum pressure timeseries for the 51-member seasonal forecasts between January 2017 and 199 
December 2023. (b) For a specific lead time and grid cell, Spearman’s ranks of the monthly minimum pressure 200 
for ensemble member 0 and member 1. (c)  For a specific lead time and grid cell, the black line shows the 201 
probability density function of the 1275 Spearman correlations, the red line shows the median of the 202 
distribution. 203 

2.3 Storm tides modelling 204 

We simulate the storm tides in Europe using a regional cut-out of the calibrated depth-averaged 205 

hydrodynamic model Global Tide and Surge Model Version 4.1 (GTSMv4.1), which is based on 206 

Delft3D Flexible Mesh (Kernkamp et al., 2011; Muis et al., 2016; X. Wang et al., 2022). GTSMv4.1 has 207 

a variable spatial resolution, going from 25 km in the deep ocean to 2.5 km along the coasts (1.25 km 208 

in Europe). It uses bathymetric data from EMODNET for Europe (Consortium EMODnet Bathymetry, 209 

2018), Bedmap2 (Fretwell et al., 2013) for the Arctic, and General Bathymetry Chart of the Ocean 210 

(GEBCO) 2019 (GEBCO, 2014) for the rest of the globe together with some local datasets. The 211 

regional model derived from GTSM covers a domain between latitudes 30.2N to 71.5N and 212 

longitudes 12.7W to 42.9E.  213 

For the tidal boundary conditions, we use tidal constituents from the Finite Element Solution global 214 

ocean tidal atlas (Lyard et al., 2021). Storm tides are simulated by applying wind and pressure fields 215 

as forcing inputs to the model. Both tidal and meteorological forcing are applied together to capture 216 

the non-linear interactions between tides and storm surges. For meteorological forcing, we use 10 m 217 

wind components and mean sea level pressure fields from SEAS5 at a spatial resolution of 0.4 218 

degrees and a temporal resolution of 6 hours, obtained from the MARS Catalogue of ECMWF 219 

(ECMWF, 2018). As further explained below, this simulation covers 525 years. In addition, to validate 220 

the SEAS5 storm tides we also simulate storm tides derived from ERA5 data. For this, we use 10 m 221 

wind components and mean sea level pressure fields at a spatial resolution of 0.25 degrees and a 222 

temporal resolution of 1 hour, obtained from the CDS. This simulation covers 44 years, spanning 223 

from 1979 to 2023. 224 

By pairing ensemble member storm tide timeseries from initialisation months that are six months 225 

apart and disregarding the 1-month lead time (as explained below; Figure 3), it is possible to obtain 226 

5,250 years from the re-forecast period (6 pairs of initialisation months x 25 ensemble members x 35 227 

years), and 1,836 years from the forecast period (6 pairs of initialisation months x 51 ensemble 228 

members x 6 years). This results in timeseries with a total length of 6,936 years. To reduce 229 

computational costs while accounting for interannual variability, we conduct the storm tide 230 

simulation for one pair of initialisation months and 15 ensemble members in the re-forecast period, 231 
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resulting in 525 years. We focus on the re-forecast period because its longer historical record 232 

provides a more comprehensive representation of climate variability compared to the forecast 233 

period. While any pair of initialisation months separated by six months could have been used to 234 

generate the synthetic years, we specifically execute GTSM for seasonal forecasts spanning 235 

December 1981 and June 2016, for each forecast initialised in the months of December and June, 236 

and for each of the 15 ensemble members. Each forecast spans seven months, but the first month is 237 

excluded due to dependencies between ensemble members (see Section 3.1). Therefore, we use it to 238 

only to spin up GTSM, and only the six months (lead times of 2 to 7 months) of storm tide data are 239 

used for further analysis. This results in 525 timeseries with a duration of 6 months, covering January 240 

to June, and another covering July to December.  241 

 242 

Figure 3. Example of the construction of one synthetic year, disregarding the 1-month lead time and stitching 243 
the 2-month lead time to 7-month lead time of two initialisation months that differ six months. 244 

2.4 Extreme value analysis 245 

We conduct EVA using the peaks-over-threshold (POT) method, fitting a generalised pareto 246 

distribution (GPD) to SEAS5 and ERA5 storm tide timeseries. For the SEAS5 timeseries, the first step 247 

of the EVA is to construct synthetic years by pairing ensemble members. Specifically, for each 248 

ensemble member, we combine the forecast initialised in December with the forecast from the 249 

following June, resulting in a synthetic year spanning 1st of January to 31st of December. By applying 250 

this procedure to 15 ensemble members across 35 years (1981 – 2016), we obtain a total of 525 251 

synthetic years.  252 

Next, we derive the extremes values of SEAS5 and ERA5 by applying the POT method with a 253 

threshold at the 99.5th percentile, and ensuring that the events are independent by using a 254 

declustering time of 3 days between events (Wahl et al., 2017).  255 

2.2.1In the first step of our methodology, we assess the biases in SEAS5 minimum mean sea level 256 

pressure  (Section 2.2.1). However, additional biases may arise from SEAS5’s wind fields or 257 

differences in spatiotemporal resolution – SEAS5 being coarser in both spatial and temporal 258 

resolution – potentially leading to underestimations of the simulated storm tide extremes. Therefore, 259 
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before fitting extreme values to statistical distributions, we test for biases in SEAS5-derived storm 260 

tides. We do this by comparing the mean of ERA5-derived POT extremes with the 95% confidence 261 

intervals of 1,000 bootstrapped samples (with replacement) of SEAS5-derived mean POT extremes. 262 

This approach allows us to identify regions in Europe where SEAS5 produces unbiased extreme storm 263 

tides relative to ERA5.  Since global hydrodynamic models such as GTSM typically have an uncertainty 264 

of approximately 10 cm, we further classify biased regions based on the differences between the 265 

mean of ERA5 and the median of the SEAS5 bootstrapped samples. We define small biases where 266 

this difference is less than 10 cm. Differences exceeding 10 cm are classified as over- and 267 

underestimations. 268 

Finally, we fit the POT extremes to the GPD using the SciPy Python package. We estimate 95% 269 

confidence intervals (CIs) through bootstrapping with 1,000 resampled samples (with replacement). 270 

Additionally, we empirically derive return periods for SEAS5 and ERA5 using the Weibull’s formula 271 

(Coles, 2001) for POT extremes. 272 

We perform the same analysis for annual maxima (AM), fitting a generalised extreme value (GEV) 273 

distribution. However, since both methods lead to similar results (see Figure 6 and S1), we present 274 

only the results for the POT-GEV approach.  275 

3 Results 276 

3.1 SEAS5 evaluation 277 

First, we asses potential biases of SEAS5 by comparing the monthly minimum mean sea level 278 

pressure of SEAS5 against ERA5. Figure 4 shows the p-value results from the bias test comparing the 279 

mean values of SEAS5 and ERA5 for the re-forecast and forecast periods. Results are presented for 280 

the entire year and disaggregated by seasons, with stippling that marks where the mean differences 281 

are statistically significant.  282 

The results for the entire year (panels a and f) show significant differences across large areas during 283 

the re-forecast period, particularly in tropical zones and parts of the Southern Hemisphere. 284 

Conversely, in the Northern Hemisphere, especially in Europe, parts of Asia and along the west coast 285 

of the U.S., the mean values from SEAS5 closely match those of ERA5, providing unbiased 286 

representations of the minimum mean sea level pressure. During the forecast period, the results 287 

show statistical significance in only a few regions, suggesting that SEAS5 is generally suitable for 288 

generating unbiased events. Differences between the re-forecast period and forecast period can be 289 

attributed to the short time span used to assess the biases for the forecast period in comparison to 290 

the re-forecast period. Furthermore, differences can occur due to differences in the initialisation 291 

between the re-forecast, that is initialised with ERA-Interim (Dee et al., 2011) and OCEAN5 (Zuo et 292 
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al., 2018), and the forecast, initialised with ECMWF operational analyses (Kelder, Marjoribanks, et al., 293 

2022).   294 

In extra-tropical regions, the storm season occurs in the winter months, spanning September to 295 

March in the Northern Hemisphere and April to August in the Southern Hemisphere. In the Northern 296 

Hemisphere, extra-tropical regions that experience substantial storm tides include Northern Europe, 297 

the U.S., Russia and China (Dullaart et al., 2021; Priestley et al., 2020). Panel (e) shows that in the re-298 

forecast dataset, SEAS5 does not capture ERA5 mean values well for the SON season along the 299 

eastern U.S. coast. However, it performs better along the U.S. west coast, Europe (excluding Spain’s 300 

Atlantic coast), China and most of Russia. For the DJF season, SEAS5 shows no statistically significant 301 

differences with ERA5 along European and U.S. coastlines. For the forecast period, both SON and DJF 302 

seasons show minimal statistically significant differences globally. 303 

In the Southern Hemisphere, storm tides are substantial along the Australian coast and the Atlantic 304 

coast of South America (Dullaart et al., 2021). In these regions and during the MAM season, SEAS5 305 

accurately captures minimum mean sea level pressures, but it shows statistically significant grid cells 306 

in northern Australia. In the JJA season, SEAS5 performs well in South America but shows significant 307 

deviations in the northern and southern regions of Australia. 308 

Second, we assess the independence of the ensemble members of the SEAS5 forecasts. Figure 5 309 

shows the results with panels (a) – (e) representing the re-forecast period and panels (f) – (j) covering 310 

the forecast period. Each panel shows the median Spearman correlation for lead times ranging from 311 

one month to six months. In general, the Spearman correlation decreases as lead time increases. For 312 

a lead time of one month, the mean Spearman correlations are more than 0.3 in large parts of the 313 

domain, indicating dependencies between ensemble members. From a lead time of two months 314 

onwards, most regions exhibit Spearman correlation coefficients near zero, indicating independence 315 

among ensemble members. However, tropical regions in the Pacific and Indian Oceans show high 316 

correlations, likely attributable to SEAS5’s forecasting skill for El Niño-Southern Oscillation (ENSO). 317 

SEAS5 has been shown to exhibit lower ensemble spread in ENSO regions (ECMWF, 2021; Johnson et 318 

al., 2019). 319 
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Figure 5. Results of the independence test of the SEAS5 monthly minimum sea level pressure. The plot shows 327 
the median Spearman correlation result of the pairwise comparison between ensemble members for each lead 328 
time month, distinguishing between the re-forecast and forecast periods. 329 

3.2 Statistical analysis of storm tides  330 

We assess whether the extreme storm tides obtained from the POT method exhibit significant biases 331 

(Figure 6 panel a). The results reveal region-specific biases in SEAS5 storm tides compared to ERA5. 332 

SEAS5 overestimates extreme storm tides in the Mediterranean and underestimates them in the 333 

Baltic region, as well as in certain locations along the southern coast of Spain and the Mediterranean. 334 

Most of these biases are small and occur in regions where extreme storm tides are low (less than 1 m 335 

+ MSL). Storm tides across the rest of Europe are unbiased.  336 

Figure 6 panel b shows the 500-year return levels (approximately corresponding to the time span of 337 

the SEAS5 synthetic dataset) derived from the SEAS5 POT-GPD fit, where the highest values are 338 

observed along the English Chanel and western UK. Figure 6 panel (c) shows the absolute differences 339 

in 500-years return levels between SEAS5 and ERA5, while panel (d) shows the relative differences. 340 

Blue shading indicates regions where SEAS5 return levels exceed those of ERA5, whereas red shading 341 

indicates regions where ERA5 return levels are higher. SEAS5 generally simulates higher return levels 342 

in northern Spain and France, the Italian Adriatic coast, the Netherlands, Ireland, and southwestern 343 

UK, with exceedances of up to 0.4 m and relative differences over 10%. Conversely, northern and 344 

western parts of the UK exhibit higher ERA5 return levels, with relative differences also exceeding 345 

10%. 346 

The analysis using the AM-GEV method (Figure S1 in Supporting Information), results in similar 347 

biases, return levels and differences relative to ERA5. Additionally, return periods other than 500 348 

years, also produce results consistent with those presented here.  349 
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4 Discussion 390 

Pooling ensemble members from SEAS5 to drive GTSM and generate 525 years of synthetic storm 391 

tide timeseries has proven effective in improving the robustness of storm tide return period 392 

estimates, reducing their uncertainty, and enhancing their accuracy (Figure 7 and Figure 8). The 393 

number of synthetic years could be significantly increased by expanding the number of initialisation 394 

months and ensemble members used. However, combining re-forecast and forecast datasets is 395 

challenging, due to differences in both ensemble sizes and the bias characteristics presented in 396 

Figure 4. Re-forecasts show regional mean sea level pressure biases at the global scale, whereas 397 

forecasts appear unbiased across most of the domain in all seasons. Before merging these datasets, 398 

further analysis is required to quantify and address these differences, which can arise from 399 

differences in initialisation data used for the re-forecasts and forecasts (Kelder, Marjoribanks, et al., 400 

2022), and the shorter observational record (six years) available for testing the bias of the forecast 401 

dataset.  402 

Our findings demonstrate that the SEAS5 seasonal forecast archive can be used to generate unbiased 403 

(Figure 4) and independent (Figure 5) synthetic storm tide events for most extra-tropical regions. In 404 

the Northern Hemisphere, particularly along the U.S. West Coast, Europe, China and Russia, as well 405 

as in the Southern Hemisphere, including South America and certain seasons of Australia, mean sea 406 

level pressure estimates from SEAS5 show the potential to be used to drive hydrodynamic models. 407 

While this is the first attempt to systematically assess SEAS5’s suitability for extreme mean sea level 408 

pressure conditions at a global scale, previous studies have successfully applied ensemble pooling to 409 

SEAS5 or its predecessors to study extremes in precipitation, temperature, wind and storm surges, in 410 

specific regions in Europe. However, certain variables required bias correction to generate reliable 411 

extremes (van den Brink et al., 2004; Hillier & Dixon, 2020; Kelder et al., 2020; Kelder, Marjoribanks, 412 

et al., 2022; Van Den Brink et al., 2005; Walz & Leckebusch, 2019).  413 

Our application of SEAS5 to force GTSM in Europe successfully simulates synthetic storm tides with 414 

good performance across most regions, except in parts of the Mediterranean and Baltic Seas, where 415 

slight biases remain (Figure 6). The regional biases found in this analysis either in the mean sea level 416 

pressure or in the storm tide extremes can be attributed to differences in the spatiotemporal 417 

resolution between ERA5 and SEAS5 (Agulles et al., 2024), and due to the data assimilation applied in 418 

ERA5, which constrains it more closely to observations. The biases in storm tides cannot be 419 

attributed to the GTSM hydrodynamic model, as the same GTSM cut-out model setup was used for 420 

both ERA5 and SEAS5 meteorological forcing. In our current analysis, these regional biases have not 421 

yet been corrected. However, we suggest that in future studies, comprehensive bias assessment 422 

should be conducted and bias correction techniques applied where necessary. While significant 423 



Manuscript submitted to JGR: Oceans 
 

progress has been made in bias correction for climate variables, correcting biases in extremes 424 

beyond the observational timeframe remains a challenge (Berg et al., 2024; Kelder, Wanders, et al., 425 

2022), and future research should focus on the development of bias correction methods to mitigate 426 

storm tide biases (Agulles et al., 2024). Additionally, further investigation is needed to evaluate the 427 

physical credibility of the SEAS5-derived extremes to assess the drivers and plausibility of the 428 

simulated extremes that occur beyond the observational record (Kelder, Wanders, et al., 2022).  429 

While the re-forecast period allows us to capture the maximum possible climate variability, the 430 

SEAS5 time span (1981 to present) also captures key tidal cycles, such as the 8.5 year cycle of lunar 431 

perigee or the 18.61-year lunar nodal cycle (Haigh et al., 2011). However, its representation of 432 

multidecadal climate variability remains limited to the past 40 years, restricting its ability to estimate 433 

probabilities under future conditions. Nevertheless, the same methodology used in this study could 434 

be applied to large-ensemble climate simulations (Eyring, Bony, et al., 2016; Ishii & Mori, 2020), 435 

providing the possibility to extend return period estimates beyond present-day conditions.  436 

Considering the full time span of SEAS5 and its complete ensemble set, up to 6,936 years of synthetic 437 

storm tides could be generated, with the dataset continuously expanding for each initialisation 438 

month. This extended dataset offers substantial opportunities for various applications, including: (1) 439 

reassessing current design standards for coastal flood defences (Van Den Brink et al., 2005), (2) 440 

improving the understanding of historical return periods for extreme events, (3) identifying plausible 441 

yet unprecedented storm tide events (Horsburgh et al., 2021), and (4) enabling robust compound 442 

flood risk modelling when combining the storm tides with other variables present in SEAS5 forecasts, 443 

such as precipitation or significant wave heights.  444 

While this dataset includes all storms occurring in extra-tropical regions, a significant advancement 445 

would be the creation of a global dataset that combines storm tide time series from both extra-446 

tropical and tropical regions. Although the approach presented here could be applied to both tropical 447 

regions and extra-tropical regions, the resolution of SEAS5 is insufficient to accurately resolve 448 

tropical cyclones (Hodges et al., 2017; Murakami, 2014; Thomas et al., 2021). To address this, a 449 

hybrid approach using, for example, synthetic tropical cyclone tracks (Bloemendaal et al., 2020; 450 

Emanuel et al., 2006; James & Mason, 2005; Lee et al., 2018) in combination with pooled ensembles 451 

from seasonal forecast archives to drive hydrodynamic models could be a solution. However, tropical 452 

cyclones should be removed from the seasonal forecast archives to ensure consistency in the 453 

modelling process.  454 

Physically-based approaches, such as the one presented here, use long-record meteorological 455 

datasets to drive hydrodynamic models, offering a more physically consistent representation of 456 
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storm tides compared to fully statistical methods applied to observed sea levels. However, their high 457 

computational cost may limit their feasibility at large spatial scales. Future work could explore hybrid 458 

methods for generating synthetic storm tide events and their ability to produce robust and physically 459 

sound return periods for extreme events. These methods could include weather generators that 460 

stochastically simulate meteorological forcing while still accounting for the physics of storm tides 461 

through hydrodynamic models (Z. Wang et al., 2025). 462 

5 Conclusions 463 

Ensemble pooling of seasonal forecasts has proven to be a useful technique to estimate the 464 

probabilities of extreme events across multiple variables. This approach is effective when the events 465 

obtained from those variables are independent and unbiased. Our results show that SEAS5 helps 466 

reduce uncertainties in Europe when used to generate large datasets of storm tides for estimating 467 

extreme return periods. These results are mostly unbiased, with the exception of the Baltic and 468 

Mediterranean seas. In other extra-tropical regions, such as the U.S. West Coast, China and Russia in 469 

the Northern Hemisphere and South America in the Southern Hemisphere, SEAS5 ensemble pooling, 470 

shows a great potential for estimating robust storm tide return periods when combined with a 471 

hydrodynamic model.  472 

Traditional large-scale return period estimates remain highly uncertain, especially for extreme 473 

events, which often have the greatest impacts. Pooling SEAS5 ensembles offers an alternative 474 

approach to improve the robustness of return period estimates for the present climate. Establishing 475 

reliable return period estimates under current conditions is essential, as it provides a solid 476 

foundation for assessing future climate risks, which are significantly more uncertain. The methods 477 

used in this study, combining ensemble pooling with hydrodynamic modelling, can be applied to 478 

large-ensemble climate models. This would allow for more robust future return period estimates, 479 

leading to enhanced coastal flood risk assessments at large scale and ultimately supporting more 480 

effective adaptation and mitigation strategies. 481 
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Introduction  

Results of the alternative EVA method AM-GEV used to analyse the storm tide results. 

 

Figure S1. Statistical analysis of storm tides using the AM-GEV method: (a) Bias test results for AM, (b)  AM-

GEV derived storm tide levels for the 500-year return period, (c) absolute difference between AM-GEV 

SEAS5- and ERA5-derived storm tide levels for the 500-year return period and (d) relative difference 

between AM-GEV SEAS5- and ERA5-derived storm tide levels for the 500-year return period. 

 


