

High-resolution zenith delay and tropospheric gradient fields track precipitation during heavy localscale rainfall events

Supplementary Materials

Andreas Kvas¹, Stephanie J. Haas¹, Jürgen Fuchsberger¹, Gottfried Kirchengast^{1,2}

Wegener Center for Climate and Global Change, University of Graz
 Institute of Physics, University of Graz

Derivation of highresolution gridded ZWD and tropospheric gradient fields

01

Data and processing flow

slant delays processed by GFZ Helmholtz Centre for Geosciences Assumption: $\nabla ZWD \propto \begin{bmatrix} G_E \\ G_N \end{bmatrix}$ (Elósequi et al. 1999)

2024-04-30

Least squares setup

Standard formulation of slant total delay:

 $STD(\epsilon, \alpha) - m_H(\epsilon)ZHD_0 - m_{GH}(\epsilon)[\cos\alpha G_{NH} + \sin\alpha G_{EH}] = m_W(\epsilon)ZWD + m_{GW}(\epsilon)[\cos\alpha G_N + \sin\alpha G_E] + e_k$

STD... slant total delay ϵ, α ... elevation, azimuth m_H, m_W ... hydrostatic (H) and wet (W) mapping function (GMF, Böhm et al. 2006) ZHD_0 ... apriori zenith hydrostatic delay (Saastamoinen 1976, Davis et al. 1985) m_{GH}, m_{GW} ... hydrostatic (H) and wet (W) gradient mapping function (Chen and Herring 1997) G_{NH}, G_{EH} ... apriori hydrostatic gradients (north, east)

ZWD ... zenith wet delay G_N , G_E ... wet gradients (north, east)

Least squares setup

Standard formulation of slant total delay:

 $STD(\epsilon, \alpha) - m_H(\epsilon)ZHD_0 - m_{GH}(\epsilon)[\cos\alpha G_{NH} + \sin\alpha G_{EH}] = m_W(\epsilon)ZWD + m_{GW}(\epsilon)[\cos\alpha G_N + \sin\alpha G_E] + e_k$

Applied Constraints: $0 = ZWD(t_k) - ZWD(t_{k-1}) + u_k$

$$0 = G_N(t_k) - G_N(t_{k-1}) + v_k$$

 $0 = G_E(t_k) - G_E(t_{k-1}) + w_k$

Differences between epochs are constraint for all unknown parameters – relative weights are determined by variance component estimation.

2024-04-30

Least squares output

Least squares solution is computed independently for each station s

Covariance Information

ZWD,

Gradients

$$\hat{\Sigma}(t_k) = \begin{bmatrix} \hat{\sigma}_{\widehat{ZWD}}^2 & \hat{\sigma}_{\widehat{ZWD},\hat{G}_N} & \hat{\sigma}_{\widehat{ZWD},\hat{G}_E} \\ \cdot & \hat{\sigma}_{\hat{G}_N}^2 & \hat{\sigma}_{\hat{G}_N,\hat{G}_E} \\ \cdot & \cdot & \hat{\sigma}_{\hat{G}_E}^2 \end{bmatrix}$$

 $\widehat{ZWD}(t_k), \widehat{G}_N(t_k), \widehat{G}_E(t_k)$

High-resolution gridded zenith delay and gradients

02

High-resolution gridded zenith delay and gradients

01

Taylor series expansion of ZWD at each station position x_s $ZWD_s(x) = ZWD(x_s) + \nabla ZWD \Big|_{x_s} (x - x_s) + ...$

Approximation of
$$\nabla ZWD$$
 with $\frac{1}{c} [\hat{G}_N \quad \hat{G}_E]$
 $ZWD_s(x) \approx ZWD(x_s) + \frac{1}{C} [\hat{G}_N \quad \hat{G}_E](x - x_s) + \dots$

Variance propagation and weights

$$\sigma_{S}^{2}(x) = \begin{bmatrix} 1 & \frac{\Delta x}{c} \hat{G}_{N} & \frac{\Delta y}{c} \hat{G}_{E} \end{bmatrix} \begin{bmatrix} \hat{\sigma}_{\widehat{ZWD}}^{2} & \hat{\sigma}_{\widehat{ZWD},\widehat{G}_{N}} & \hat{\sigma}_{\widehat{ZWD},\widehat{G}_{E}} \\ \cdot & \hat{\sigma}_{\widehat{G}_{N}}^{2} & \hat{\sigma}_{\widehat{G}_{N},\widehat{G}_{E}} \\ \cdot & \cdot & \hat{\sigma}_{\widehat{G}_{E}}^{2} \end{bmatrix} \begin{bmatrix} 1 \\ \frac{\Delta x}{c} \hat{G}_{N} \\ \frac{\Delta y}{c} \hat{G}_{N} \end{bmatrix} \implies w_{S} = \frac{1}{\sigma_{S}^{2}}$$

High-resolution gridded zenith delay and gradients

Merging of individual ZWD fields

$$ZWD(x) = \frac{1}{\sum_{s} w_{s}(x)} \sum_{s} ZWD_{s}(x) w_{s}(x)$$

05

Derivation of \hat{G}_N and \hat{G}_E from ∇ZWD $[\hat{G}_N(x) \quad \hat{G}_E(x)] = \nabla ZWD(x) \cdot C$ Steps 01 - 05 can be computed for arbitrary positions x

Station distribution and grid domain

High-resolution gridded gradient fields

Result of stochastic interpolation - gradients

High-resolution gridded zenith delay fields

Result of stochastic interpolation - zenith wet delay

High-resolution zenith delay and tropospheric gradient fields track precipitation during heavy localscale rainfall events

Supplementary Materials

Stadt

Andreas Kvas¹, Stephanie J. Haas¹, Jürgen Fuchsberger¹, Gottfried Kirchengast^{1,2}

1) Wegener Center for Climate and Global Change, University of Graz 2) Institute of Physics, University of Graz

GRA7

Wissenschaft

Thank you!

