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Soot particles are known for their _ _ _
strong light absorption and role in = We investigated the importance of accurately representing size and morphology when modeling the optical properties of black carbon,

] Sr?gtcgricgslsiﬁi:lgl\?sr i?r:;] [t1h 1ro1u2%h combustion and age in stages, altering their size, shape, direct radiative forcing [1,2]. through a comparison of laboratory measurements and model simulations.
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= Numerical simulations of ~6,000 fractal soot particles with varying shapes, sizes, and o — =3 = A series of eleven laboratory experiments were carried out to generate soot with diverse properties, which were then measured, modeled,

compositions were conducted to quantify changes in their radiative properties. and systematically compared.
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Fig. 1. Significant variation in single scattering albedo (a) and mass absorption cross-section (b) of soot as a function of particle modeling uncertainties.
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= This study confirms that incorporating fractal morphology is crucial for reducing g % AN SR = » The two extreme morphology models were used to derive an index for morphology (MI):
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= In Delhi, during periods of high anthropogenic BC emissions, light absorption is P =T -MI+o - (1 —MI) + ¢ | .

overestimated by 50—-200% when using external or core-shell internal mixing assumptions.
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