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2. Materials and methods 

2.1 Description of study area 

The Noyil River sub-basin, located within the Cauvery Basin in Tamil Nadu, India, is a rapidly 

urbanizing region encompassing cities such as Coimbatore and Tirupur. This sub-basin features 

diverse land uses, including agriculture, urban, and industrial areas. Groundwater serves as a 

critical resource for domestic and agricultural purposes throughout the basin (Srinivasan et al., 

2014; Adilakshmi et al., 2024). The semi-arid climate of the sub-basin, coupled with a history 

of frequent droughts, has significantly impacted groundwater availability, resulting in deeper 

groundwater levels in the west than in the east (Srinivasan et al., 2014). The Noyyal River was 

perennial till late 1970s, but it has become ephemeral river which remain dry during major part 

of year and flows mostly during southwest (July to September) and northeast monsoon seasons 

(October and November) (Sajil & James, 2016; Karunanidhi et al., 2022; Lenin et al., 2022; 

Krishnamoorthy et al., 2023). The basin faces challenges such as water scarcity, pollution, and 

degradation of natural habitats due to anthropogenic activities and climate change impact 

(Adilakshmi & Venkatesan, 2024). Figure 1 provides an overview of the study area, including 

elevation features, river networks, stream gauges, rain gauges, observation wells, and lithologs 

with available aquifer conductivity data. The study area is bounded by the Bhavani River to 

the north, the Amravati River to the south, the Cauvery River to the east, and the steeply rising 

Vellingiri Hills in the Western Ghats to the west, where the Noyyal river originates and flows 

eastward to join the Cauvery River. Elevation ranges from approximately 2,000 m in the west, 

gradually decreasing to 78 m in the east.  

2.2 Climate and Geology of study area 

The study area experiences rainfall contribution from both northeast monsoon and the 

southwest monsoon, with an average annual rainfall of 647 mm. The region is characterized by 

hot, dry conditions, with summer temperatures reaching up to 41°C, while winter temperatures 

drop to around 15°C (Sajil & James, 2016; Selvakumar et al., 2017). The predominant soil 

types include colluvial, alluvial, calcareous, non-calcareous, red, brown, and forest soils (Sajil 

& James, 2016; Selvakumar et al., 2017; Karunanidhi et al., 2022; Lenin et al., 2022; Sajil, 

2020; CGWB, 2008). Geologically, the region is part of the peninsular gneissic complex, 

composed primarily of metamorphic rocks. The dominant lithologies include charnockites, 

granites, hornblende-biotite gneiss, sillimanite gneiss, along with basic and ultrabasic 

intrusives, crystalline limestone, syenite, pegmatite, and quartz veins. The major rock 

formations are fissile hornblende-biotite gneiss, granites, gypseous clay, and charnockite (Sajil 

& James, 2016; Karunanidhi et al., 2022; GSI, 1995). Aquifers in the area span from the 

Archaean to recent alluvium, contributing to a complex hydrogeological setting. The alluvial 

deposits along the Noyyal River course are key water-bearing formations, although the primary 

aquifers are Archaean crystalline rocks, featuring weathered fractures and joints. Groundwater 

storage in hard rock terrains is predominantly in fissures, fractures, and weathered zones, while 

porous media are more common in sedimentary formations. Gneissic formations exhibit higher 

degrees of weathering compared to charnockite, with weathering depths extending up to 15 

meters in the granitic gneiss region and up to 8–10 meters in charnockite areas (Sajil & James, 

2016; CGWB, 2008). 



 

Figure -1  

Overview of study area, digital elevation model and measuring instruments. 

2.3 Data collection  

This study utilized a combination of primary and secondary datasets from various sources to 

support model development and validation. Rainfall data were obtained from two key sources: 

(i) observational data at monthly time steps for the period 2007–2017 from 16 rain gauges 

managed and recorded by the Tamil Nadu (T.N.) State Department, and (ii) gridded rainfall 

data from the India Meteorological Department (IMD) at a spatial resolution of 0.25° and daily 

temporal resolution for the period 1996–2023 (Pai et al., 2015). Groundwater level 

observations were sourced from: (i) the T.N. State Department, which provided monthly 

records from 230 wells spanning 2007–2017, and (ii) the Central Ground Water Board 

(CGWB), recorded data which provided quarterly data for 120 wells covering the period 1996–

2023. Streamflow measurements for the Noyil River were obtained from daily records 

maintained by the Central Water Commission (CWC). Hydraulic conductivity values were 

determined using results from pump tests conducted by the CGWB at 42 locations within the 

basin. Groundwater draft estimates were obtained from the Minor Irrigation Census survey, 

providing high-resolution village-level (~10 km²) data on number of wells and well 

distribution, categorized by well type (dug wells, shallow wells, medium wells, and deep 

wells). The data included average pumping hours per day during various agricultural seasons 

(Kharif and Rabi) and yield ranges for different well types. Secondary datasets were utilized 

for soft validation of modeling outputs. Actual evapotranspiration (AET) data were derived 

from the MODIS product (500 m spatial resolution, 8-day temporal resolution), while soil 



moisture data were sourced from NASA's SMAP mission. Topographic elevation details were 

extracted from the NASA Shuttle Radar Topography Mission (SRTM) Global 1 Arc-Second 

dataset (Version 003), available at a spatial resolution of 30 m.  

2.4 Recharge and Draft computation  

2.4.1 Initial Draft estimates 

The Minor Irrigation Census data were utilized to derive initial estimates of groundwater 

abstraction (draft) for the basin. This dataset provided detailed information at the village level, 

including the number and types of wells (see Table 2.1), average daily pumping hours during 

various seasons (Kharif and Rabi), and yield for each well type. The assumptions on well yields 

are derived from the ranges provided in Minor Irrigation Census manuals and reports, 

crowdsourced online data, and previously published studies (see Table 2.1). Although the 

depths of dug wells range from 0 to over 70 meters, the majority are less than 30 meters deep, 

justifying the use of an assumed yield of 0.6 L/s for these wells. By utilizing the number of 

wells, their hourly usage, and assumed yields, a village-level (~10 km²) map displaying 

pumping rates(mm/year) is generated (Fig. 4). This enabled the computation of preliminary 

draft estimates, which formed the basis for further model development. 

2.4.2 Calculation Code 

To estimate recharge and groundwater extraction in the basin, an unconfined transient 

groundwater model (Ambas 1D) was utilized. This model is a modified version of model 

adapted from Park and Parker (2008), which developed a 1-D framework specifically for 

unconfined aquifers. The governing equation of the model can be expressed as 
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In this equation, ℎ denotes the hydraulic head [L],  𝑡 signifies time [T], 𝑆𝑦  represents the 

specific yield of the aquifer system [–], and  𝐾 is the hydraulic conductivity [LT-1]. The authors 

adjusted the equation to incorporate the effects of precipitation and discharge, resulting in the 

following formulation (Equation 2): 
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Here, 𝜆 is the discharge constant [T-1],  𝑅 indicates rainfall [LT-1], and  𝑟𝑓  is the recharge 

factor [–]. The discharge constant quantifies the fraction of accessible groundwater storage that 

is lost laterally, reflecting groundwater loss due to local hydraulic gradients. Kumar (2012) and 

Subash et al. (2017) further modified this equation to account for groundwater pumping, 

leading to the development of the Ambhas model (CRAN - Package ambhasGW, 2017), which 

is a physically based model tailored for unconfined aquifers (Collins et al., 2020). 

 The model's governing equation is articulated as follows (Equation 3):  
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In this equation,  𝐷net represents the net groundwater abstraction [LT-1], accounting for the 

balance between pumping and return flow. Notably, the recharge factor 𝑟𝑓 encompasses 



contributions from all recharge sources, including direct recharge, indirect recharge, and return 

flow contributions (wastewater recharge, pipe leaks etc.). The term   (1 − 𝑟𝑓)𝑅 accounts for 

additional components of the water balance, such as evapotranspiration (ET) and runoff (Q). 

In this model, the recharge factor is applied directly to the total rainfall (R) rather than the 

effective rainfall [R − (ET + Q)], thereby not considering the associated non-linear effects.  

The solution to above equation can be given as follows: 
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𝑟𝑓 is recharge factor,  𝑝𝑑 = 1 −
1

𝑆𝑦
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The Ambhas model has been utilized and documented in various research studies. De Bruin et 

al. (2012) applied it to model groundwater levels at the basin scale, while Sekhar et al. (2016) 

employed it to simulate groundwater dynamics in the Kabini Critical Zone Observatory. Horan 

et al. (2021a, 2021b) incorporated the Ambhas model to integrate groundwater routines within 

the Global Water Availability Assessment (GWAVA) framework. Robert et al. (2018) utilized 

the Ambhas model to develop a water management model at the farm level. Further, 

Scheidegger et al. (2021), integrated 2D lateral groundwater flow into the Variable Infiltration 

Capacity (VIC) model, creating the VIC-AMBHAS model. This enhanced model was 

subsequently used to develop a national-scale hydrological model for the Philippines. Ponnie 

et al. (2022) leveraged the Ambhas model to simulate daily baseflows in a tropical basin. 

Additionally, Shubham et al. (2022) used the model to investigate high episodic recharge 

events in tropical hard rock aquifers of southern India. Verma et al. 2023 utilized the model to 

investigate the impact of large-scale aquifer recharge using recycled water on groundwater 

replenishment. Recently, Baron et al. introduced the Ambhas model into the GWAVA 

framework to improve groundwater representation in large-scale water resource models. Jisa 

Joseph et al. 2022 employed the VIC-Ambhas model (Scheidegger et al., 2021) to assess the 

potential of transitioning from flood irrigation to drip irrigation as a strategy to mitigate 

groundwater depletion in the Indo-Gangetic Plains. Jisa Joseph. et. al. 2023 utilized their newly 

developed irrigation scheme with VIC-Ambhas model to assess impacts of irrigation on Indo-

Gangetic Plains. 

 



 

Figure 2. Schematic representation of Noyyal basin model showing (a) the model workflow 

and processes, using AMBHAS 1D model for calibration on Dataset (1) and using subsequent 

recharge factor from calibration to test the validation of the model on different Dataset (2) from 

1996 to 2023 and then using the obtained recharge and draft as input to more complex 

heterogeneous numerical model to simulate groundwater depths and river flows.  

Ambhas model is used with a recharge factor varying from 2% to 15% for each well. These 

initial guesses for the study area are taken from infiltration factors provided by CGWB reports 

and other basin studies. The pumping rates for the Ambhas-1D model are derived from a 

pumping raster (Fig. 4) and adjusted by ±10% to account for uncertainties in the estimated 

values. Using Dataset 1 (Table 3), the model is calibrated to produce net recharge (recharge 

minus pumping) for each observation well from 2007 to 2017, generating a monthly time series 

of calibrated distributed recharge and pumping for the basin. The calibrated recharge factors 



and pumping map were then applied to a long-term secondary dataset, Dataset 2 (2000–2023; 

Table 3), to validate the model's ability to simulate groundwater dynamics over an extended 

period. Given the highly anthropogenic nature of the basin, where pumping rates fluctuate 

significantly over time, especially during climatic stress periods, the draft was allowed to vary 

within a ±30% range during the validation phase to account for changes in pumping over the 

years.  

This approach enabled the model to effectively simulate groundwater levels in observation 

wells while preserving the 8-11% recharge factor established during the calibration phase with 

Dataset 1. The variation in recharge reflects contributions from indirect sources, including 

surface water imports, urban pipe leaks, and wastewater infiltration, while the ±30% 

adjustment in pumping accommodates long-term fluctuations in groundwater abstraction. The 

variation in recharge will also inherently account for indirect sources of recharge, such as 

surface water imports, urban pipe leaks, and wastewater infiltration, while the ±30% 

adjustment in pumping accommodates long-term changes in groundwater abstraction. If these 

adjustments are not incorporated into the model, it fails to simulate long-term groundwater 

dynamics, indicating significant changes in groundwater use patterns over decades in the basin, 

as also emphasized by Srinivasan et al. (2014).  

Calibration (optimx – gradient descent based optimization) 

The model optimx() function from R language and optimizes the parameter to reduce the 

sum of squared errors in each iteration so that sum of squared errors obtained is least. 

𝑆𝑆𝐸 = ∑(GWL𝑜𝑏𝑠,𝑖 − GWLsim,𝑖)
2

𝑛

𝑖=1

 

Where GWL𝑜𝑏𝑠,𝑖is the observed groundwater level at time i,  GWLsim,𝑖 is the simulated 

groundwater level at time i, and n is the number of observation values for that well. 

 



Figure 4 Groundwater abstraction map derived from minor irrigation census data, 

incorporating the number of different well types, their hourly pumping usage across 

various seasons, and the assumed yields as specified in Table 2. 

 

Table 1. Description of various datasets used 

Data Used Source of Data Resolution & Period Count 

Rainfall Gauge T.N. State Department 
(Calibration-Dataset 1) 

Monthly, (2007-2017) 16 

 Indian Meteorological 
Department (IMD) 

(Validation-Dataset 2) 

0.25°, Daily, (1996-2023) 12 

Observation 
Wells 

T.N. State Department 
(Calibration-Dataset 1) 

Monthly, (2007-2017) 230 

 Central Ground Water Board 
 (Validation-Dataset 2) 

Quarterly, (1996-2023) 100 

Conductivity 
Tests 

Central Ground Water Board Noyil Basin 42 

Stream Flow 
Gauge 

Central Water commission 
(Validation-Numerical 

Model) 

2000-2023 1 

Irrigation Wells Minor Irrigation Census Survey 2012-2015 1,57,365 

 

Table 2. Description of well yield specifications for different well types. 

Well Types Yields used 

Dugwells  0.6 L/s 

Shallow Wells  0.75 L/s 

Medium Wells  1L/s 

Deep Wells  2 L/s 

 

Details of datasets used for calibration and validation 

Datasets Rainfall Source Count Period Observation 
Wells Source 

Count Period 

Calibration 
(Dataset 1) 

T.N. State Department 16 2007-
2017 

T.N. State 
Department 

230 2007-
2017 

Validation 
(Dataset 2) 

Indian Meteorological 
Department 

12 1996-
2023 

CGWB 100 1996-
2023 



 

 

2.3 Numerical Simulation methods  

 

Figure 2 Numerical model with unstructured finite difference grid: 200 m grid size for 

the Noyil River, 500 m grid size for the river boundaries, and 2 km grid size for other 

areas. The boundary inside the grid is actual basin boundary achieved after stream 

delineation. 

2.3.1 Conceptual model (e.g. BC’s) 

The Noyil basin covers an area of approximately 3,600 km². However, for this study, the 

modelled area was extended to around 8,695 km² to effectively capture the boundaries and 

nearby hydrological features. This extension is necessary because the sub-basin is significantly 

longer than it is wide, and accurate boundary representation is crucial for transient simulations 

because boundaries can influence the simulations. The expanded model area includes nearby 

rivers, which were modelled as drain and general head boundaries, an approach that best suits 

the study area's characteristics. Additionally, the study area is heavily influenced by human 

activities and contains wells deeper than 200 meters, making it unsuitable to be modelled with 

no-flow boundaries. 

The basin was simulated and discretized using an unstructured grid mesh which is solved using 

the finite volume approach, implemented within the MODFLOW framework. The 

computational domain comprises 9,978 cells with variable spatial resolutions, tailored to 

capture the distinct geographical and topographical features of the basin. The Noyil River was 

modelled with a fine grid size of 200 meters, where it was conceptualized as a drain boundary 

to reflect its geomorphology and hydrological dynamics precisely. 

The model domain is bounded by the Bhavani River to the north, the Amravati River to the 

south, the Cauvery River to the east, and a mountainous region to the west. The Bhavani and 

Cauvery rivers were represented as general head boundaries (GHB), while the Amravati River 

was treated as a drain boundary. The grid discretization was primarily 2 km by 2 km across the 

Bhavani 

No flow 
Amravati 

Cauvery 



region, with exceptions: the Noyil River was modeled using a finer grid of 200 meters, and the 

boundary areas to the east, west, north, and south were modeled at a 500-meter resolution. 

The basin’s elevation data were derived from the NASA Shuttle Radar Mission Global 1 arc-

second V003 dataset, with elevation values assigned to the top of each grid cell. The conceptual 

model’s base, representing bedrock, was set at a depth of 100 meters below the surface. 

Hydraulic conductivity values, obtained from field pump tests, were incorporated into the 

model, with specific locations and dataset details provided in Fig. 1 and Table 1. 

 

 

Figure 3 

Conductivity field generated from inverse PEST simulation and recharge field fed to the 

steady state simulation. 

 

2.3.2 Initial condition 

The study area is characterized by data scarcity and discontinuous records, particularly lacking 

borehole transmissivity data across the region. To address this, inverse modeling was 

conducted using PEST to generate conductivity field for the study area. Pilot points were 

assigned to grid cells, each initialized with an estimated hydraulic conductivity based on 

regional studies and provided with a specified range for adjustment. Grid cells where pump 

test conductivity values were available were treated as fixed pilot points, meaning that the 

conductivity at those locations remained constant during the inverse simulation process. This 

approach effectively incorporated the actual pump test results into the model, preserving the 

observed field data while optimizing the conductivity for other areas. 

The model was supplied with net recharge estimates for January 2012, obtained from the 

AMBHAS_1D model. PEST then iteratively adjusted the hydraulic conductivity values at the 

pilot points to minimize the discrepancies between the simulated and observed groundwater 

heads at observation wells, as well as the simulated baseflow for the dry period in January 

2012. The algorithm repeatedly executed forward model runs, each time refining the parameter 

values to progressively reduce the error. 

The inverse simulation ran for approximately 14 hours on a 12th Gen Intel(R) Core (TM) i9-

12900K processor (64gb RAM), utilizing all available cores and parallel computation 

capabilities. The process continued until the error in groundwater head simulation and baseflow 

was reduced to acceptable limits. Figures 3(a) and 3(b) show the resulting conductivity field 

from the inverse simulation and the net recharge input used in the process. Using the 

conductivity field generated, we conducted a forward model run to get a calibrated steady state 

model which establishes the initial conditions for subsequent transient numerical simulations. 



2.3.3 Transient simulation 

The steady-state head distribution from January 2012 is used as the initial condition for our 

model. The time series of net recharge, derived from the 1-D model, serves as input for the 

dynamic model, which operates on monthly time steps. This methodology allows for the 

detailed analysis of groundwater dynamics, river base flows during dry periods, and the 

simulation of groundwater well hydrographs. 

The period from 2012 to 2017 was selected for the numerical simulation due to the availability 

of monthly time step data for this interval. Additionally, the objective of this study is to present 

a methodology for modelling a sparsely monitored, climate-impacted semi-arid basin with 

substantial anthropogenic influences. 

4. Results and Discussions 

The term (1 − 𝑟𝑓)𝑅  in the model represents additional components of the water balance, 

including evapotranspiration (ET) and runoff (Q). Unlike approaches that consider effective 

rainfall [R − (ET + Q)], this model applies the recharge factor directly to total rainfall (R), 

thereby simplifying the calculation by avoiding the inclusion of non-linear interactions between 

components. The basin's mixed land use, comprising agricultural, urban, and industrial sectors, 

introduces complexity to groundwater recharge processes. Factors such as surface water 

imports, pipeline leakages, and wastewater recharge contribute to the recharge dynamics, 

making it challenging to isolate individual contributions. By incorporating these factors 

collectively, the recharge factor effectively represents the overall recharge scenario in the basin 

without disaggregating individual components. This integrated approach makes the model 

particularly well-suited for basins with diverse and overlapping land-use patterns. 

Figure 5 displays a comparison between observed mean heads and calibrated simulated heads 

based on Dataset 1, which includes rainfall and groundwater observations from the T.N. State 

Department. The 1-D model was initially calibrated using finely calculated pumping rates with 

a ±20% variation and recharge rates ranging from 2% to 16%. The calibrated model estimated 

the rainfall recharge to be approximately 9.67%. To validate this calibration, the model was 

applied to an entirely different long-term dataset, Dataset 2, which consists of rainfall data from 

the IMD and groundwater observations from the CGWB, covering the period from 1996 to 

2023. 

 



Figure 5 

Hydraulic heads derived from the calibrated Ambhas-1D model using Dataset 1 (source: 

State Department Wells and Rain Gauges) 

 

Figure 6 

Validation results based on Dataset 2 (sources: rainfall data from IMD and well data 

from CGWB) 

Figure 6 presents a comparison between observed and simulated long-term groundwater heads 

from the validation model, using a recharge rate of 9.67% and calibrated pumping rates. The 

model successfully simulates the long-term groundwater head trends in the basin; however, it 

does not effectively capture the peaks observed around 2005 and 2015. This discrepancy could 

be attributed to several factors, such as the application of the validation model to an entirely 

different dataset, as well as the model's inability to accurately represent sharp groundwater 

fluctuations that occur over short periods due to heavy rainfall events. Validation on Dataset 2 

was performed to determine whether the model-generated outputs—specifically, the time 

series of net recharge (recharge minus pumping)—are suitable for use in the subsequent 

numerical MODFLOW model. The validation results demonstrate the model's capability to 

capture groundwater dynamics over extended periods. This finding enables us to generate 

inputs for a more complex transient numerical model operating on monthly time steps. 

The numerical model is initialized using the calibrated net recharge for January 2012 and the 

estimated hydraulic conductivity field to perform a forward simulation. Figure 6 presents a 

scatter plot comparing simulated and observed heads for January 2012 across 208 observation 

wells, yielding an R-squared of 0.998 and an RMSE of 3.542 meters. The forward simulation 

also estimated river flow with an error margin of less than 2.6% (Table 2). These results suggest 

that the simulated groundwater heads from the forward run can serve as initial conditions for 

the subsequent transient model. Figures 7(a) and 7(b) display maps of the estimated 

groundwater depths and heads, respectively. 



Figure 7 

Comparison of simulated and observed hydraulic heads from the steady-state numerical 

simulation (Initial condition) 

 

Baseflow 

Observed Baseflow in 

2012 (m3/d) 

Computed Baseflow 

(m3/d) 

Residual Error (%) 

200327.0 205521.3 5194.3 <2.6% 

 

 

Figure 8 

Simulated hydraulic heads and groundwater depths (GWDs) utilized as initial conditions 

for the transient numerical model. 



A transient numerical simulation was conducted using inputs derived from the 1-D model, with 

monthly time steps covering the period from 2012 to 2017, to analyse groundwater dynamics 

within the basin. Figure 8 presents a scatter plot comparing simulated and observed heads, 

based on 11,063 observation points, with an R-squared value of 0.997 and an RMSE of 4.5 

meters. It is important to note that the transient numerical model was not calibrated; it directly 

utilized the time series inputs from the 1-D model. Figure 9 shows the observed and simulated 

river flows during dry periods for the simulation period. The transient model effectively 

captures river flows during dry periods, except for April and May in the years 2015 and 2016. 

This discrepancy may be attributed to unanticipated releases from the non-operational upstream 

Orathupalayam Dam, which was primarily used for irrigation. Unfortunately, data on water 

releases from this small dam is not available. 

 

Figure 9 

Scatter plots comparing simulated and observed monthly groundwater heads for the 

period 2012-2017, derived from the monthly time-step transient numerical model. 

 



 

Figure 10 

Plots of observed versus simulated groundwater heads on a monthly timescale from 

January 2012 to December 2017, with well numbers indicated in each subplot. Note that 

not all wells are displayed here; additional plots for other wells are provided in the 

supplementary material. 

 



 

Figure 10 

Measured monthly dry-period flow rates versus simulated flow rates from the transient 

numerical model. 

Figure 10 illustrates groundwater dynamics captured by the numerical models in comparison 

to observed data, showing changes in net and cumulative storage within the basin at each time 

step. It also depicts the variations in base flow corresponding to each monthly time step, 

highlighting the advantage of using numerical models. The figure indicates that as groundwater 

depths become shallower, the contribution of base flow to the river increases due to a greater 

volume of water available in aquifer storage to sustain river flow. From January 2012 to July 

2014, as groundwater depth declines, there is a predominantly positive net storage loss, 

indicating that the aquifer is losing storage mainly due to over-abstraction during the drought 

years of 2013 and 2014, when pumping exceeded recharge. Cumulative storage change also 

shows a continuous increase during this period, reflecting the total volume of water lost from 

aquifer storage. In late 2014 and early 2015, heavy rainfall events contributed to significant 

recharge of the aquifer, leading to positive net storage gain and a decrease in total cumulative 

storage loss. These results demonstrate the variability in aquifer storage changes at each time 

step, governed by the complex interactions between recharge and pumping. Overall, from 2012 

to 2017, the aquifer experienced a net storage loss, with groundwater depths declining from 8 

to 14 meters 



 



Figure 11 

Mean observed GWD depth versus simulated GWD, Storage changes and baseflow as 

computed by the dynamic model  

5. Conclusion     

Semi-arid basins, characterized by climate extremes such as prolonged rainfall deficits, often 

experience heightened dependence on groundwater resources due to limited surface water 

availability. In basins dominated by anthropogenic activities, this reliance exacerbates water 

stress during rainfall deficit periods, potentially leading to drought conditions. Understanding 

groundwater dynamics in such basins poses significant challenges, particularly in data-scarce 

regions where critical information on recharge and groundwater abstraction (pumping) is often 

insufficient to develop robust dynamic groundwater models. Additionally, accurately 

quantifying recharge and abstraction across diverse land-use types adds another layer of 

complexity, further complicating effective groundwater management and modeling efforts. 

A water table fluctuation method based 1-D model was utilized to estimate the recharge and 

pumping characteristics of the basin. The model was calibrated using Dataset 1 and validated 

against a completely independent data source, Dataset 2, to assess its effectiveness. The study 

highlights the necessity of incorporating finer-scale attributes, such as anthropogenic water use, 

which are frequently disregarded due to data scarcity. The study illustrates how calibrated time 

series outputs from a straightforward water table fluctuation-based 1-D model can serve as 

inputs for a more complex, physically based transient numerical model. Transient numerical 

model was applied without any calibration, relying solely on the time series inputs generated 

by the 1-D model. This approach is particularly well-suited for data-limited, semi-arid regions 

with unpredictable rainfall and substantial anthropogenic water use, presenting considerable 

challenges for water security during drought periods when groundwater is the primary water 

source. The model allows for the detailed analysis of groundwater dynamics, flow behaviour 

during dry periods, and the effective management of water resources in water-stressed basins. 

Validation model using Dataset 2 showed increase in groundwater draft similar to observations 

made by Srinivasan et. al.  The rainfall recharge is applied directly after calibrating the system, 

this recharge factor considers all kinds or recharge (direct, indirect) without their separation, 

and thus this kind of approach of modelling a system can be suitable for highly complex mixed 

basins with limited data available. Using soft validation results show that even in periods of 

low rainfall GW use for irrigation does not stop – this causes the depletion of Groundwater 

levels in the basin. Which later refills or recharges after sufficient rain. This means the 

Groundwater in such basins are directly tied to rainfall recharge. 
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Figure 12 

Long term annual rainfall versus mean observed groundwater depth in the basin. 



 



 

Figure 13 

Mean soil moisture over the basin during different periods over the years. 

 

 



 

 



 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


