1. Introduction 3. Parameter-state correlations in a free ensemble
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updated using observational information. Empirical parameters can be 2000 - 2000

treated as state variables and updated in the same way (right).
However, they are not observable and do not evolve during forecasts.
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The estimated parameters values are optimal in a statistical sense, if all e e

DA assumptions hold true. ldeally, these optimal values should also be
stable and physically interpretable.

B and C: If parametric uncertainty is
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* A 6-hour nature run initialized at sunrise, providing the assimilated ters that adapt to the at heric state. Adapts ; | D 9 4 " <tical . .
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Here, initial p values are randomly drawn from 0.5 < p < 4.5. ensemble-based parameter estimation experiments similar to B and C above. the observations have small error (o,,9°" = 0.1 K) and are
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estimated parameters will be optimal for the wrong reason: random error . . .
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Ideally, in few iterations the filter should identify the true value p=1.5. compensation, similar to experiment L. algorithm works nicely.
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