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Abstract The formation of floods, as a complex physical process, exhibits dynamic changes in its driving
factors over time and space under climate change. Due to the black‐box nature of deep learning, its use alone
does not enhance understanding of hydrological processes. The challenge lies in employing deep learning to
uncover new knowledge on flood formation mechanism. This study proposes an interpretable framework for
deep learning flood modeling that employs interpretability techniques to elucidate the inner workings of a peak‐
sensitive Informer, revealing the dynamic response of floods to driving factors in 482 watersheds across the
United States. Accurate simulation is a prerequisite for interpretability techniques to provide reliable
information. The study reveals that comparing the Informer with Transformer and LSTM, the former showed
superior performance in peak flood simulation (Nash‐Sutcliffe Efficiency over 0.6 in 70% of watersheds). By
interpreting Informer's decision‐making process, three primary flood‐inducing patterns were identified:
Precipitation, excess soil water, and snowmelt. The controlling effect of dominant factors is regional, and their
impact on floods in time steps shows significant differences, challenging the traditional understanding that
variables closer to the timing of flood event occurrence have a greater impact. Over 40% of watersheds exhibited
shifts in dominant driving factors between 1981 and 2020, with precipitation‐dominated watersheds undergoing
more significant changes, corroborating climate change responses. Additionally, the study unveils the interplay
and dynamic shifts among variables. These findings suggest that interpretable deep learning, through reverse
deduction, transforms data‐driven models from merely fitting nonlinear relationships to effective tools for
enhancing understanding of hydrological characteristics.

Plain Language Summary The formation of floods is often dynamically influenced by multiple
driving factors. Traditional methods based on statistics or hydrological models struggle to clearly understand
flood mechanisms due to their limitations. Although deep learning has become an effective tool for flood
modeling, its black‐box nature makes it difficult to enrich understanding of flood processes through it. Our
proposed interpretable deep learning offers a perspective to unveil the dynamic drivers of floods by extracting
patterns from deep learning in a reverse deduction approach. We started with models that perform best on flood
extremes and identified the dominant factors and variations of floods across 482 watersheds in the United States.
These variations exhibit regional characteristics, with precipitation playing a more significant role and showing
more pronounced trends in watersheds where floods are primarily driven by precipitation. We found that
variables from 2 days before a flood could have a greater impact than those from the previous days.
Furthermore, we revealed the combined impact of variables on flooding through deep learning, showcasing their
dynamic changes. Interpretable deep learning explores a new avenue to derive new hydrological insights from
inverse data, helping hydrologists better understand natural physical processes.

1. Introduction
Flood disasters have always been one of the most significant natural threats to human survival and social
development (Tellman et al., 2021; Winsemius et al., 2016). With the intensification of global warming trends,
observational evidence and climate model predictions consistently indicate that due to the increased atmospheric
water‐holding capacity caused by global warming, the frequency of drought and flood disasters is expected to
significantly increase (Han et al., 2024; Rentschler et al., 2023; Singh& Basu, 2022). Furthermore, the probability
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of occurrence of major disasters under extreme scenarios and the uncertainty of their spatial and temporal dis-
tribution are gradually increasing (Donat et al., 2016; Hirabayashi et al., 2013; Yin et al., 2021). Extensive
research shows that the frequency, seasonality, and scale of global floods vary significantly among different
regions, highlighting the urgent need to improve and enhance flood forecasting to gain a more comprehensive
understanding of the processes and driving factors behind global watershed flooding (Alfieri et al., 2017; Ber-
ghuijs et al., 2016; Bloeschl et al., 2019; Wang et al., 2024).

The formation of floods, as a complex physical process, involves the interaction between hydrological, meteo-
rological and physical characteristics of the watersheds, and can be triggered by multiple mechanisms (Berghuijs
et al., 2019; Jiang et al., 2024; Mallakpour & Villarini, 2015; Wasko & Nathan, 2019). For instance, floods can be
induced by increased heavy precipitation brought about by climate change; rising temperatures can affect the
dynamics of snow accumulation in cold regions, leading to more extreme rainfall events, which might make
watersheds dominated by snowmelt more susceptible to extreme precipitation, thereby altering the seasonality
and scale of regional floods; long‐term changes in land cover can alter soil moisture, evapotranspiration, and land‐
atmosphere flux exchanges, thus affecting the flood generation process (Anderson et al., 2022; Bertola
et al., 2021; Rentschler et al., 2023; Sharma et al., 2018; Sikorska et al., 2015; Westra et al., 2013). Past studies
that have inferred the mechanisms of flood generation in watersheds often identify a single dominant mechanism
driving the floods, which can only explain partial characteristics of local floods (Do et al., 2020; Kiptum
et al., 2024; Merz et al., 2012; Stein et al., 2021). However, a single flood event within a watershed can also be
produced through different mechanisms, as the processes affecting the magnitude, frequency, and timing of
floods can occur in parallel and interact in various ways across spatial and temporal scales (Hall et al., 2014;
Musselman et al., 2018; Slater et al., 2021). The dominant flood mechanisms in a watershed under climate change
are not always constant and may change over time. The drivers of floods are dynamically variable in both time and
space (Dethier et al., 2020; Regonda et al., 2005; Vormoor et al., 2016).

Current research on the driving factors of floods primarily focuses on classifying flood processes based on events
(Berghuijs et al., 2019; Stein et al., 2020; S. Zhang et al., 2022; C. Zhang et al., 2022). Traditionally, flood types
have been categorized into four main groups: those induced by intense rainfall leading to maximum flood
inundation, those caused by excessive soil moisture resulting in maximum flood volumes, those triggered by
snowmelt leading to maximum flood volumes, and those induced by rain‐on‐snow events causing maximum
flood inundation (Berghuijs et al., 2016; Keller et al., 2018; Turkington et al., 2016). These event‐based flood
types are used to identify the predominant flood category for each watershed (Mallakpour & Villarini, 2015;
Slater & Villarini, 2016; Tarasova et al., 2020). Interpretations of historical flood trends and predictions of future
floods are generally based on statistical methods using rainfall‐runoff data, or by employing process‐based
models that describe precipitation partitioning at the watershed scale (Archfield et al., 2016; Zhang
et al., 2016). Statistical methods, which are largely based on simpler linear regression theories, struggle to extract
complex nonlinear relationships related to floods from a vast array of hydrological variables (Bloeschl
et al., 2019; Liu, Gui, et al., 2022; Tarasova et al., 2023). Process‐based modeling approaches, which rely on
complex mathematical formulas and precise understanding of hydrological processes, reflect hydrological pro-
cesses with many uncertainties and generalized phenomena (Bertola et al., 2021; Do et al., 2017). Attribution
faces various challenges that depend on the variables considered. In extreme hydrology, disentangling multiple
driving factors can be highly complex (Rong et al., 2024; Slater et al., 2021). A major unresolved issue in hy-
drology is the lack of consideration for non‐stationary drivers on appropriate temporal and spatial scales (Bertola
et al., 2021; Machado et al., 2015). If the attribution framework is too narrow, failing to consider multiple
plausible driving factors, significant drivers of hydrological changes may be overlooked (Guo et al., 2017;
Whitfield et al., 2012). Due to the complexity and dynamic nature of flood generation mechanisms, the effec-
tiveness and reliability of both approaches are limited by their ability to represent the relevant processes con-
trolling flood responses (Merz et al., 2021; Slater et al., 2021).

In recent years, deep learning has gradually become an effective approach for simulating and discovering hy-
drological patterns due to its powerful capability to extract complex nonlinear relationships between variables
(Kratzert et al., 2018; Nearing et al., 2024; Xu et al., 2023). Deep neural networks such as LSTM, TCN, and GRU
have achieved excellent performance in areas like flood processes, water quality, and soil moisture variations, as
confirmed by a large amount of recent research (J. Zhang et al., 2018; Kratzert et al., 2019; Feng et al., 2020;
Frame et al., 2022). However, the “black box” nature of these data‐driven models results in a lack of interpret-
ability, making it unclear how features influence outputs and their directions, with poor visibility into feature
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importance (Lees et al., 2022; Shen, 2018). Moreover, solely using them does not enhance our understanding of
hydrological processes (Shen et al., 2023; Tripathy & Mishra, 2024). Understanding the underlying principles
behind the decisions of deep learning models is crucial not only for bolstering our confidence in their use (i.e.,
building trust) and for further improving the models (i.e., troubleshooting) but also essential for discoveries in
hydrological science (Cheng et al., 2022; Feng et al., 2023; Jiang, Zheng, et al., 2022; Y. Liu, Bian, &
Shen, 2023). This leads to the question of how to uncover regional spatiotemporal hydrological features from
machine learning models trained on flood processes, which could provide new insights into hydrology.

Recent studies have advanced the field by exploring the correlation between input rainfall‐runoff features and the
decisions of deep learning models, a practice known as interpretable deep learning (Lusch et al., 2018; Mamalakis
et al., 2023;Murdoch et al., 2019; Shen, 2018). Most existing research using interpretable techniques has relied on
simple tree regression models to reveal the overall climatic contributions of watersheds to flood generation
(Konapala et al., 2020; Lundberg et al., 2020; Stein et al., 2021). Even the few explanations applied to deep
learning are limited to calculating feature importance, struggling to reveal the dynamic changes in driving factors
for individual flood events (such as interannual variations) and the interactions between factors. It's noteworthy
that using deep learning to simulate the time series of flood formation and achieving satisfactory simulation
results is a prerequisite for applying interpretable methods (Jiang, Bevacqua, & Zscheischler, 2022; Jing
et al., 2023; Q. Liu, Gui, et al., 2022). Poor simulations inevitably lead to significant errors, especially in pre-
dicting peak floods, and explanations based on such simulations would deviate from reality (Bian et al., 2023;
Koya & Roy, 2023; Liu, Bian, & Shen, 2023). Previous explorations using LSTM have encountered gradient
problems in recurrent neural networks, which tend to give recent variables significant impact (S. Anderson &
Radic, 2022; De la Fuente et al., 2024). Moreover, in most cases, LSTMs struggles to accurately predict flood
peaks, introducing potential bias into the analysis of flood driving factors. However, the latest studies based on
Transformer variants like Informer, which utilize self‐attention mechanisms, are more sensitive to peaks and offer
a possibility for accurately identifying driving factors (Zhou et al., 2021).

In this study, our objective is to construct a framework for interpretable deep learning to reveal the dynamic
driving factors of floods. We have trained the Informer model on 482 watersheds in the United States, and
comparisons with other deep learning models ensure that the Informer possesses the most reliable flood peak
forecasting capability. SHAP interpretability techniques were employed to quantify the flood response to hydro‐
meteorological variables, identify the dominant driving factors of watershed floods, and elucidate the mecha-
nisms of these variables at different moments preceding flood events. We also examined the abrupt changes and
trends of dominant driving factors over time and revealed the dynamic changes under different flood generation
mechanisms. Furthermore, we delved into and quantified the flood response to interactions between variables and
associated the abrupt changes in dominant driving factors to reveal their dynamic changes.

2. Methods
2.1. Informer

Informer is a deep learning framework based on Encoder‐Decoder and self‐attention mechanism. It is designed to
process large‐scale, complex and irregularly sampled time series data, and can capture complex long‐term de-
pendencies in the data, which is very important for large‐sample hydrological data (Zhou et al., 2021). It is the key
to feature extraction. It introduces two special structures, ProbSpare self‐attention and self‐attention distillation,
to improve the shortcomings of slow calculation and limited memory of the attention layer in the traditional
Transformer structure (L. Shen & Wang, 2022). The former ProbSpare self‐attention will amplify the effective
attention score to reduce spatiotemporal complexity, and the latter self‐attention distillation reduces memory
consumption by shortening the length of each layer input (Zhou et al., 2023). In addition, the parallel generative
decoder mechanism in Informer implements a forward calculation to output all prediction results for long‐term
sequences instead of making predictions in a step‐by‐step manner, which greatly improves the inference speed
of long‐sequence predictions (Kroner et al., 2020; C. Zhang, Zhou, et al., 2022). The structure of Informer is
shown in Figure 1.

The input data is first processed through the operation of fixed positional embedding to preserve the local context.
After the encoding step, the data format that enters the Encoder layer is as follows:
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Xtfeed[i] = αuti + PE(Lx×(t− 1)+i) + +∑
p
[SE(Lx×(t− 1)+i)]p (1)

where u represents the vector of input data, i ∈ {1, …, Lx}, with Lx being the length of the sequence. α is a factor
that balances the magnitude between scalar projection and local/global embeddings, and is set to 1 when the data
has been normalized.

ProbSparse self‐attention is introduced, utilizing the KL divergence to measure the similarity between probability
distributions and q to differentiate important queries. The sparsity of the ith query can be represented as follows:

M(qi, K) = ln∑
LK

j=1
e
qik

T
j̅̅
d

√

−
1
LK

∑

LK

j=1

qikTj
̅̅̅
d

√ (2)

where d is the dimension of the mapped input sequence, and LK is the length of the sequence. Each key is only
allowed to attend to the dominant queries, thus the ProbSparse self‐attention can be represented as:

A(Q, K, V) = softmax(
QKT
̅̅̅̅̅
dk

√ ) V (3)

Subsequently, by utilizing distilling, dominant features with substantial attention are assigned greater weights,
and dilated convolutions are added between each encoder and decoder layer, significantly reducing the temporal
dimension of the input. This operation can be represented as:

Xtj+1 = MaxPool(ELU(Conv1d( [Xtj]AB))) (4)

Figure 1. Encoder and Decoder Structure of the Informer for Simulating the Flood Process. The ProbSparse self‐attention in the Encoder employs KL divergence to
measure the similarity between probability distributions and q, distinguishing important queries. It also generates diverse sparse query‐key pairs, thereby avoiding
severe information loss.
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Where Xtj+1 is the output of the multi‐head ProbSparse self‐attention layer, [ ]AB is the result of the previous multi‐
head ProbSparse self‐attention layer, and ELU() is the activation function of Conv1d() along the temporal
dimension.

In the decoder section, the Informer employs a batch generation approach to output multi‐step predictions in one
go to enhance the running speed, which can be represented by the following computation:

Xtde = Concat(Xttoken, X
t
0)∈R(Ltoken+Ly)×dmodel (5)

Where Xttoken is the start token, which is dynamically sampled from a portion of the input sequence close to the
prediction target, and Xt0 is the placeholder for the predicted sequence. Ltoken and Ly are the lengths of the start
token and the predicted sequence, respectively, with dmodel being the dimension.

2.2. SHAP

SHAP (SHapley Additive exPlanation) is a machine learning interpretability method inspired by cooperative
game theory (CGP), designed to reveal the impact of each input feature on individual predictions (Štrumbelj &
Kononenko, 2014). As the computational capacity and complexity of machine learning models continue to
advance, understanding the internal workings of these models and how they make decisions becomes increasingly
challenging (Fong & Vedaldi, 2017; Rudin, 2019). Enhancing the interpretability of “black box” models allows
for better understanding of their predictions, and increases the generalizability and credibility of machine learning
algorithms. The core idea of the SHAP method originates from the Shapley value, which is used to allocate the
contribution of each participant to the total gain in cooperative games—a concept borrowed from game theory. In
SHAP analysis, each prediction in deep learning is viewed as a game to determine the marginal contribution of
each feature across different combinations (Aas et al., 2021; Stojic et al., 2019). A positive SHAP value indicates
a positive impact of the feature on the prediction, while a negative SHAP value indicates a negative impact.

Compared to traditional feature importance analysis, SHAP holds an advantage by not only presenting the global
importance of features but also explicitly detailing the specific impact of each feature on individual predictions
and the complex interactions between features (Li et al., 2022). This aids in understanding the predictive process
and decision rationale of complex “black‐box” models. For deep learning time series predictions, SHAP values
can be derived for both variable dimensions and temporal dimensions, providing the possibility of revealing more
precise flood driving factors. The SHAP values is calculated as:

ϕi( f , x) =∑S⊆N\{i}
| S|!(|N| − | S| − 1)!

|N|!
[f (xS ∪ {xi}) − f (xS)] (6)

where ϕi(f,x) represents the SHAP value of feature xi, f denotes the predictive function of the model, N and S are
the sets encompassing all features and the set excluding xi respectively. xS signifies the input under the given
feature set S, and |N| and |S| correspond to the sample count of sets N and S respectively.

For this work, we describe an approach to perform interpretable deep learning rainfall‐runoff time series simu-
lations on a large global sample to reveal the dynamic drivers of flooding. This process can be represented by
Figure 2. A hydrometeorological time series data set from a large sample of Caravan catchments was used to train
the Informer model to build non‐linear prediction maps from meteorological factors (i.e., precipitation, tem-
perature and day length) and hydrological factors (soil moisture) to daily flow. Accurate flood process simulation
is the prerequisite and key to ascertaining the potential hydrological laws contained in deep learning. It ensures
that the working principles derived from deep learning are objective and reliable. The advantage of using Informer
lies in its strong sensitivity to extreme values and good capture properties of long‐distance dependencies, which is
beneficial for flood estimation and can generate accurate contributions of input variables to flood peaks at
different times in the past. Physically realistic mapping from inputs to outputs helps derive hydrologically
meaningful insights from subsequent model interpretation. After that, SHAP interpretation technology is used to
interpret the trained Informer to reveal the dynamic response of floods to variables. Informer's training mecha-
nism is based on inferring target values from several past moments, which are defined as time steps, forming a
three‐dimensional array with the number of variables and batch size for deep neural network learning. The
occurrence of sustained rainfall and prolonged high soil moisture prior to a flood significantly impacts flood
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generation. Information regarding these factors is encapsulated within the three‐dimensional arrays utilized for
each prediction. Interpretation over time steps supports quantifying the contribution of variables at different times
to flood generation. Flood drivers behave differently across events over time and may potentially change. We
count the occurrence times of all dominant driving factors of flood events based on a 10‐year sliding window, and
the MK test is used to verify whether they have mutated every 10 years, that is, the mechanism of flood generation
has undergone fundamental changes. Finally, we calculate the interaction SHAP value for the Informer trained in
the first step, reveal the interaction between dominant driving factors and other variables on floods at time steps,
and explore the reasons for changes in flood generation mechanisms.

3. Data
This study considers the Caravan data set, which includes daily meteorological forcing data and daily river flow
observations for 482 watersheds in the United States, from the latest large‐sample research. These catchment
areas are minimally influenced by human activities and are suitable for the time series simulation of deep learning
(Addor et al., 2017; Kratzert et al., 2024). Our analysis is confined to catchment areas with at least 20 years of

Figure 2. Interpretable Deep Learning Framework Revealing the Dynamic Drivers of Floods. Exploring the inner workings of well‐trained Informer models to
investigate the dominant driving factors of floods, the flood's response to variables at different past times, and the dynamic interactions among variables.
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discharge records between 1981 and 2020, to ensure a sufficient sample size for training deep learning models.
The temporal series attributes can be represented by Table 1. The data for each watershed is retrieved from the
Caravan data set, which provides daily hydrometeorological time series, mostly spanning from 1981 to 2020. For
these catchment areas, the sample size of daily discharge records ranges from 6,820 to 14,236, with a median time
step of 10,287. Furthermore, with future updates to Caravan in more watersheds, the method we propose could
potentially be validated more extensively, which is also one of the reasons for our choice of Caravan.

The programming language of choice is Python 3.9, the libraries used for preprocessing and managing our data
are Pandas, NumPy, and PySwarms. We use the Pytorch deep‐learning framework and the NVIDIA RTX 3090Ti
GPU to train the models.

We employed the Peak Over Threshold (POT) method to extract flood peaks and corresponding predictor var-
iables from the flow time series of each watershed (Lang et al., 1999). To ensure that each flood peak is relatively
independent, the minimum time interval between two flood peaks was set to 5 days. Additionally, another
constraint was to ensure that the intermediate flow between two consecutive flood peaks is less than 75% of the
lower of the two flood peaks. The number of flood peaks extracted in this manner is determined by the threshold in
the POT method (M. Shen & Chui, 2023).

To enable the predictor variables to be recognized and used for training by the Informer model, we converted
these data into a format understandable by the model, that is, divided into input samples and corresponding labels.
This conversion process involves organizing the data into a sliding window format with time series features,
facilitating model training and subsequent forecasting tasks. This sliding window method constructs multidi-
mensional array‐form observations using consecutive time point data to predict the flow value at a specific time
point t, with the model referring to the feature values of the previous n time points (i.e., t‐1, t‐2, …, t‐n), where n
represents the time steps (Kratzert et al., 2021). Subsequently, the data is normalized to ensure that the numerical
range is between 0 and 1. This step is particularly crucial for gradient‐based deep learning algorithms, as these
algorithms are highly sensitive to the scale of input data and often require normalization to ensure algorithmic
convergence. Finally, a denormalization step was implemented to rescale the model's output data to obtain ac-
curate flow prediction values.

The hyperparameters such as the number of encoder and decoder layers, the number of attention heads, the factor
in ProbSparse self‐attention, and the sliding window size are configurations of the Informer model that determine
the efficiency and accuracy of flood estimation (Zhou et al., 2021). The number of encoder and decoder layers
dictates the depth of the model, with more layers enhancing the model's capability to process complex data.
Multiple attention heads allow the model to learn information in parallel across different representational sub-
spaces, handling the hydro‐meteorological features of the input with multiple sets of self‐attention. The factor in

Table 1
Selected Daily Meteorological and Hydrological Variables

Group Feature name Feature description Aggregation Unit

Precipitation total_precipitation Precipitation Daily sum mm/day

Evaporation potential_evaporation Potential evaporation Daily sum mm/day

Temperature temperature_2m Air temperature Daily min/max and mean °C

dewpoint_temperature_2m Dew point temperature Daily min/max and mean °C

Snow snow_depth Snow water equivalent Daily min/max and mean mm

Soil Water soil_water_layer_1 Soil water volume 0–7 cm Daily min/max and mean m3/m3

soil_water_layer_2 Soil water volume 7–28 cm Daily min/max and mean m3/m3

soil_water_layer_3 Soil water volume 28–100 cm Daily min/max and mean m3/m3

soil_water_layer_4 Soil water volume 100–289 cm Daily min/max and mean m3/m3

Radiation surface_net_solar_radiation Shortwave radiation Daily min/max and mean Wm− 2

surface_net_thermal_radiation Net thermal radiation at the surface Daily min/max and mean Wm− 2

Wind u_component_of_wind_10m Eastward wind component Daily min/max and mean ms− 1

v_component_of_wind_10m Northward wind component Daily min/max and mean ms− 1
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ProbSparse self‐attention can reduce computational complexity by making the attention mechanism sparse and
focusing on key parts of the sequence. The sliding window size represents the timestep length of input data that
the Transformer uses for each flow prediction. Simulations in each watershed require as suitable hyperparameters
as possible (Zhou et al., 2023). For a fairer comparison, we use the Tree‐structured Parzen Estimator (TPE)
method for automatic hyperparameter optimization (Ozaki et al., 2020). It builds a surrogate model using past
observations to predict the value of the objective function at any point in the hyperparameter space. During this
process, a Parzen window estimator (also known as kernel density estimation) is used to construct the surrogate
model. The TPE algorithm divides the hyperparameter space into two parts, one corresponding to better objective
function values and the other to worse values. It infers the next most likely hyperparameter point to improve
performance by comparing the probability density functions of these two parts.

4. Results and Discussion
4.1. Informer Forecast Performance and Comparison With Benchmarks

Accurate and stable predictions are prerequisites for deriving meaningful hydrological information from deep
learning. Using the Informer for daily rainfall‐runoff simulations across 482 watersheds in Caravan and based on
10‐fold cross‐validation calculated on the test set, we assessed the overall performance of the deep learning model
in these watersheds and its estimation of peak flows. Figure 3 shows the Nash‐Sutcliffe Efficiency (NSE)
evaluation metric between observed and simulated streamflow in the test set. According to the results, the
Informer was able to effectively reproduce observed stream processes. Although the standard deviation of LSTM
is more stable, the Informer achieved better simulations in most watersheds, and the Transformer exhibited
greater fluctuations in cross‐validation. This indicates that the Informer network architecture faithfully captured
the underlying dynamic relationships between runoff‐related variables in most watersheds. Across all watersheds,
290 (over 60%) achieved an NSE greater than 0.8. The performance in the majority of watersheds along the
western coast and the east significantly exceeded that in the central regions, consistent with other studies using
deep learning for rainfall‐runoff modeling, which found modeling in arid regions to be more challenging (Addor
et al., 2018; Knoben et al., 2020; M. Shen & Chui, 2023).

Figure 3. Performance of rainfall‐runoff simulation with Informer using 10‐fold cross‐validation and comparison with Transformer and LSTM. (a, d) Average
distribution of Nash‐Sutcliffe Efficiency (NSE) and KGE for simulation results by Informer; (b, e) average cumulative frequency of NSE and KGE; (c, f) distribution of
standard deviation values for NSE and KGE across 10‐fold cross‐validation. The NSE and KGE values were calculated using all samples in respective testing data sets.
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Using the POT method, a total of 21,605 significant flood peaks were identified at the outlet stations of 482
watersheds, accounting for 0.9% of the total sample (0.4%–1.8% for a single watershed). The performance of the
model in reproducing the observed flood peaks is also evaluated and showed in Figure 4. For about 70% of the
watersheds, the NSE of flood peaks simulated by Informer exceeds 0.6. However, in some watersheds such as
those around the Rocky Mountains in the Middle East of the United States, flood peaks are difficult to accurately
estimate (NSE is less than 0.5). However, these watersheds account for less than 18% of all watersheds
considered. Compared to other benchmarks, the Informer achieved most robust and reliable control of peak flows
in cross‐validation. Overall, given Informer's performance in reproducing the streams and flood peaks observed
by Caravan, it is considered well‐trained and can be used to explore underlying hydrological patterns in large
samples. When we subsequently use the interpretable method, we only focus on watersheds with flood peak
simulated NSE higher than 0.5, which helps ensure that the obtained flood driving factors and mutation infor-
mation are meaningful.

4.2. Uncovering the Dominant Dynamic Driving Factors of Floods

In the previous results, we obtained an Informer model trained on a large sample. We calculated the SHAP value
at the peak of each flood. The calculation of each flood peak considered the disturbance of flow rate by 36
variables (a total of 216 variable values) at the time step of the past 6 days. The average SHAP value of the
variables across all watersheds reflects the dominant drivers of flooding, as shown in Figure 5. Most river floods
are controlled by soil water content and are mainly distributed in the eastern and southern coastal areas and the
central and western inland areas. This means that excess soil water caused by precipitation and other factors has
become the main cause of floods. Flooding in the western coast and eastern inland areas is driven mainly by
precipitation, and this spatial distribution pattern is consistent with previous studies (Jiang, Zheng, et al., 2022). In
the Rocky Mountains and near the Great Lakes, most flooding comes from snowmelt and temperature, which is
consistent with objective facts. Studies have shown that rising temperatures in late spring in these areas cause
melting snow to flow into rivers (Bates et al., 2021; Berghuijs et al., 2016).

Figure 4. Performance of flood peak simulation with Informer using 10‐fold cross‐validation and comparison with Transformer and LSTM. (a, d) Average distribution
of Nash‐Sutcliffe Efficiency (NSE) and KGE for simulation results by Informer; (b, e) average cumulative frequency of NSE and KGE; (c, f) distribution of standard
deviation values for NSE and KGE across 10‐fold cross‐validation.
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Variables at different times in the past will have significantly different effects. For example, the snow depth in a
period before the flood peak will dominate the generation of runoff, rather than the recent snow accumulation
before the flood peak. At the same time, the impact of changes in variable values will also be covered in past time
steps. To reveal the response over time steps, we selected three representative watersheds, ensuring that they were
spatially evenly distributed and driven by different factors (precipitation, soil water, and snow cover). The graphs
in Figure 6 respectively show the effects of each variable in the three watersheds at different values (red and blue
represent high and low values respectively), where the order of the effects from high to low is the order of the
variables. Furthermore, for the variables that produced the largest flood response in each watershed, we describe
the statistics of their SHAP values for each day at the Informer's time step. For watershed (a), soil water acts as the
dominant driver of floods, promoting flood peaks at high values and suppressing floods at low values. Super
seepage runoff resulted from saturated soil and water infiltration from unsaturated soil play a key role in the
generation of floods. The effect of soil water content on the day before the flood is far greater than that of other
times in the time step, and decreases from the closer past to the further past. The same result was also seen in
watershed (b), which was subject to rainfall‐dominated floods, in which the rainfall on the day before the flood
became the most critical factor. For the watershed (c), the snow cover 2 days before the flood exhibited the most
significant positive impact on the flood behavior, whereas the snow cover one day before the flood had a relatively
smaller impact. This indicates that the snow cover in the selected watershed has a delayed effect on flood
generation.

To investigate SHAP values and the impact of time steps in watersheds dominated by different factors, we
calculated the SHAP value proportions of the dominant factors among all variables (Figures 7a, 7c and 7e). The
size of the points represents the number of flood events within each watershed. In most watersheds where floods
are dominated by precipitation, precipitation exerts a more significant control on flooding relative to other factors,
particularly in the western coastal and eastern inland regions where the SHAP value proportion exceeds 60%. In
contrast, the control of precipitation is weaker in the northeastern region, with SHAP value proportions ranging
between 40% and 50%. For watersheds where floods are dominated by soil moisture, regional differences are
more pronounced, with the most significant control observed in the southern coastal areas, where the SHAP value
proportion of soil moisture exceeds 70% in some watersheds. In watersheds where floods are dominated by snow,
although the number of flood events is relatively lower in the Rocky Mountain regions compared to the Great
Lakes regions, the impact of snow is more significant, possibly due to the perennial snow cover in the former,
making snowmelt a major source of increased river water volume. Additionally, we calculated the relative SHAP
values and cumulative distribution function curves for the 6 days preceding the flood events (Figures 7b, 7d and
7f). The results indicate that the flood response to past variables varies across watersheds with different dominant
factors. Specifically, in precipitation‐dominated watersheds, the relative SHAP value for precipitation from the
previous day far exceeds that of other times, indicating that precipitation rapidly triggers flooding. In watersheds
dominated by soil moisture, the influence extends further back in time, not being solely affected by the

Figure 5. Distribution of dominant flood driving factors revealed by interpretable deep learning. The dominant driving factors
of the watersheds are determined by summing and ranking the positive SHAP values for each flood event, where multiple
factors within each type are weighted according to their count in the total number of variables.
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precipitation of the previous day. This phenomenon is even more pronounced in snow‐dominated watersheds,
where the cumulative distribution function curve is more evenly distributed, suggesting that floods are more
influenced by snowmelt from the past 2–6 days.

The dominant driving factors of floods may change over time, and relying on traditional methods or identifying a
single driving factor over long time series often fails to reflect the objective reality. We calculated the dominant
driving factor for each flood event to assess its temporal changes. A sliding window of 10 years was used to
extract all floods within the window. The overall dominant driving factors and their occurrences every 10 years
were subjected to the Mann‐Kendall test to determine the presence of abrupt changes. The timing and trends of
these changes are illustrated in Figure 8a. To explore the extent of reversal in dominant driving factors, we
calculated the p‐values for different dominant driving factors experiencing abrupt changes across all watersheds
(Figure 8b). It reveals that the watersheds experiencing mutations are primarily distributed along the eastern and
western coasts, with mutation times in the eastern coastal regions concentrated between 1981 and 1990, and those
in the eastern inland regions concentrated between 1990 and 2000. The mutation times in the northern watersheds
along the western coast occur later than those in the southern watersheds. The trend of dominant factors exhibits
regional characteristics. In the northeastern region, an increasing trend in major factors predominates. This in-
crease is particularly significant in the precipitation‐dominated watersheds of the Upper Mississippi River.
Conversely, a decreasing trend is predominant in the Midwest. Watersheds dominated by precipitation showed
more significant changes than those dominated by soil water, indicating the latter's greater stability over time. We
calculated the dominant driving factors for each flood event over a 10‐year sliding window for three

Figure 6. (a, d, and g) Geographic locations of three representative watersheds; (b, e, and h) Role and sequence of driving factors at different values as revealed by
interpretable techniques; (c, f, and i) Dynamic response of floods to dominant driving factors at various time steps before the event. Day 1–6 denotes the time from
closest to furthest from the occurrence of the flood.
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representative watersheds to observe changes in flood events dominated by different factors (shown in Figures 8c,
8d and 8e). For watershed (a), precipitation‐dominated flood events are on an increasing trend, with an overall
tendency toward more frequent flooding within the watershed. Watersheds (b) and (c), controlled by soil water
and snowpack respectively, show a decreasing trend in the dominance of these factors every 10 years, with a
significant decrease in soil water‐controlled floods in watershed (b), accompanied by a reduction in overall flood
events. This suggests that the control of dominant driving factors changes over time and varies among different
types of dominant driving factors.

Figure 7. (a, c, and e) SHAP proportion of the dominant factors in the watershed where the dominant factors of floods are rainfall, soil water and snowmelt. The size of
the bubble reflects the number of flood events. (b, d, and f) Relative SHAP values and cumulative distribution function curves of the past 6 days in the watershed where
the dominant factors of floods are rainfall, soil water and snowmelt.
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4.3. Dynamic Interactions of Flood Drivers

The formation of floods is often influenced by multiple driving factors, or composite factors, which result in
differences in the flood formation process across various times and regions (Merz et al., 2022; Slater et al., 2021).
The interaction between these composite elements needs to be revealed. For example, floods caused by rapid
melting due to strong sunlight versus slow melting of ice caps, and differences in runoff patterns due to deep and
shallow soil moisture (S. Zhang, Zhou, et al., 2022). We categorized all considered variables into three types:
precipitation, soil moisture, and snowpack, and calculated their interaction SHAP values in each watershed. The
overall interaction is represented by the sum of SHAP interaction values (Figures 9a, 7c and 7e), where the color
reflects the magnitude of the variable values in the column, vertical dots represent the stacking of flood events,
and the horizontal range of dots indicates the strength of the interaction. The variable interactions for each flood
event can be depicted in a graph, with variable values and SHAP values under interaction represented by the
vertical axis and color, respectively. To reveal the overall extent of interactions between variables across all flood
events, we calculated the total interaction SHAP values between pairs of variables (Figures 9b, 7d and 7f). In
watershed (a), the points for precipitation and soil moisture (outlined in gray) received a broader range of as-
signments, with the average SHAP interaction value exceeding 0.2 in the figure, indicating a strong interaction
between them in watershed (a). In watersheds (b) and (c), soil moisture and precipitation, snowpack, and tem-
perature respectively showed significant interactions.

The impact of multiple driving factors varies with different values of variables and also shows different effects on
flood events over time. We extracted the previously most significant variable group to reveal the dynamic in-
teractions between variables (Figure 10). For watershed (a), which is dominated by precipitation, a promotion

Figure 8. (a) Distribution of watersheds with abrupt changes in dominant flood driving factors and the timing of these changes; (b) Extent of abrupt changes in different
types of dominant driving factors, a smaller p‐value denotes a more significant change; (c–e) Changes in flood driving factors per decade in three representative
watersheds. The dashed line represents the trend line fitted based on the number of floods occurring due to driving factors per decade.
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effect on floods is usually observed only when precipitation exceeds a certain threshold and soil moisture is high.
At the same time, the number of interaction effects that promotes floods after the mutation point in 1988 has
increased over time. For watershed (b), under the same soil moisture conditions, significant precipitation in-
creases the likelihood of floods, and after 1999, floods controlled by soil moisture and precipitation have
noticeably decreased. In watershed (c), flood periods are often accompanied by lower temperatures and greater
snow accumulation, and after 1984, floods promoted by interactive effects have sharply decreased, shifting to-
ward more inhibitory interactions instead. These results reveal the dynamic interactions between variables and
explore potential factors driving flood change from the data.

In recent decades, the driving factors of watershed floods have been potentially changing under climate change,
and the hydrological processes in corresponding flood events are not static (Davenport et al., 2020; Hall
et al., 2014). The long‐term regularity of flood formation mechanisms is difficult to obtain from traditional
models or statistical analysis (Merz et al., 2021). Based on the powerful nonlinear fitting ability of deep learning
for time series, we use interpretable methods to break the black box characteristics. In this way, hydrological
knowledge is obtained from models trained on large samples, revealing the spatiotemporal characteristics of the

Figure 9. (a, c, and e) Pairwise interactions of different driving factors in each flood event across three watersheds. P, T, ET, SW, SR, and SD represent precipitation,
temperature, potential evaporation, soil water, solar radiation, and snow depth, respectively. The most significant interactions are highlighted by gray bounding boxes;
(b, d, and f) Overall pairwise variable interactions across three watersheds are colored by interaction SHAP values, with the most significant being P‐SW, SW‐P, and
SD‐T respectively.
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dominant driving factors of floods, the interactive responses to these factors in flood formation and the mutations
of different flood generation mechanisms.

More realistic flood simulations appear to be beneficial for reverse derivation to increase hydrological insights,
especially for accurate restoration of flood peaks (Jiang, Bevacqua, & Zscheischler, 2022). Informer provides
more reliable estimates of peak values in time regions than other deep learning models. The addition of the sparse

Figure 10. (a, c, and e) SHAP values for each flood event of pairwise variables with the most significant interactions in three representative watersheds, reflecting their
impact on floods at different values of the variables. (b, d, and f) The dynamic impact of pairwise variables on floods over time, colored by SHAP values. The x and y
axes represent the range of variable values, and the z‐axis represents the chronological order of flood events. The auxiliary planes shown in gray indicate the timing of
abrupt changes in the dominant driving factors within the watersheds.
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attention structure allows the Informer to focus on the points that really contribute to the target value in the long‐
term sequence. This is due to the fact that the Informer calculates the activity and KL divergence of each query
compared to the traditional Transformer, thus reducing the number of low‐contribution pairs (L. Shen &
Wang, 2022; Zhou et al., 2023). The special structure enables Informer to be more sensitive to drastic changes in
flow, even if longer time steps are considered in the simulation, which has been confirmed in some recent water
temperature and power system simulation studies (Gong et al., 2022; Huang & Jiang, 2022; Wang et al., 2022).
Another issue that needs to be considered is multicollinearity of multiple model input factors. Jiang, Bevacqua,
and Zscheischler (2022) pointed out that it is difficult to assign high importance to highly correlated variables at
the same time because the interpretation technique serves the model rather than fully conforming to the real world.
An Informer that can accurately identify the contribution of variables to floods may make the description of
dynamic driving factors in the explanation more realistic and improve the difficulties caused by multicollinearity.

Interpretable technology explores the internal working principles of deep learning and derives the dominant
driving factors of floods in large sample watersheds. The results we reveal are consistent with past research
(Berghuijs et al., 2019; Brunner et al., 2020; Stein et al., 2020; M. Shen & Chui, 2023). Berghuijs et al. (2016)
used a hypothesis testing process to obtain the main drivers of floods in the United States, which is based on
simple formulas of meteorological and hydrological variables corresponding to different flood generation
mechanisms. The spatial distribution of precipitation‐dominated and snowmelt‐dominated watersheds was jointly
confirmed (Berghuijs et al., 2016). The difference in this study is that we used the data side to discover the
physical laws contained in big data, and we believe that the latter can adapt to changing climate and underlying
surface conditions. The significance for scientists is that they only need to understand basic hydrological
knowledge (such as how melting snow flows into rivers to cause flow changes), and they can obtain reasonable
explanations for complex phenomena between regions through this process of reverse derivation. Through some
inferences, an understanding is obtained that is close to or completely consistent with the fieldwork. It is worth
noting that we take sufficient time steps into account when calculating the driving factors of floods, because
floods may not only be controlled by sharp precipitation, but also by abundant soil water over long periods of time
in the past. It turns out that factors in the 6 days before a flood play different levels of importance, depending on
the timing of their involvement in hydrological processes (Bloeschl et al., 2017; Xiang et al., 2020). In watersheds
dominated by different primary driving factors, the contributions of factors within the time steps also vary.
Precipitation‐dominated watersheds are primarily influenced by factors from the previous day, whereas snow‐
dominated watersheds are affected more significantly by factors from the past 2–6 days Shen et al. (2023)
used a data‐driven tree simplified model to discuss the flood generation mechanism. In contrast, we use deep
learning to extend the variables in time and restore the realistic flood process as much as possible. This has also
become a more accurate, comprehensive and even unprecedented method to reveal the flood process. Efficient
access to undiscovered hydrological information.

We computed the results of the interpretability technique through a sliding window to reveal changes in the
dominant driving factors. Although only a minority of watersheds exhibited abrupt changes in dominant factors,
these changes are still significant over a long period. These abrupt changes in the United States show significant
regional differences in timing and trends (Milly et al., 2008; Min et al., 2011; Trenberth et al., 2003). Floods
caused by precipitation have become more predominant and vary greatly in magnitude, which may be related to
atmospheric warming, that is, increased atmospheric humidity leading to more extreme precipitation events
(Arnell & Gosling, 2016; Pall et al., 2011). The likelihood of extreme rainfall under climate warming increases,
meaning that every decade, more floods in watersheds are caused by precipitation, with these changes concen-
trated in the 1990s. Conversely, the frequency of floods caused by soil water is decreasing at a slow rate, with the
phenomenon of soil water surplus triggered by prior precipitation decreasing, which is also related to the
increased frequency of rapid and sharp precipitation events. Jiang, Bevacqua, and Zscheischler (2022) found
similar patterns in European regions, suggesting that the changing trends in flood mechanisms revealed by this
study may be cross‐regional or even global.

The formation of floods is often influenced by a combination of factors, and the interaction between variables
over time and how they affect river floods need to be revealed (Merz et al., 2021; Slater et al., 2021). Floods may
become more severe if multiple processes and conditions favorable to high river flows occur simultaneously
(Bloeschl et al., 2017; Sikorska et al., 2015). Through interpretable deep learning, we have revealed the time‐
varying interactions between meteorological and hydrological variables in watersheds, with the distribution of
variable values visualized within these interactions. Prolonged intense precipitation and prior high soil moisture
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often act together, with excessive net radiation and temperatures acting on snowmelt to cause flood events
(Bertola et al., 2021; Sharma et al., 2018; Westra et al., 2013). The driving factors of floods are not extreme in
themselves; their combined effects can also trigger extreme or unprecedented flood events, posing significant
challenges to flood risk management (Winsemius et al., 2016; Zscheischler et al., 2018). Phenomena that have not
yet been defined by physical formulas exist in complex natural processes, especially in the hydrological cycle.
The interpretable deep learning approach proposed in this study provides a means of data mining to reveal the
complex driving factors of floods, which is crucial for improving current flood risk strategies and developing new
ones for the future.

A better understanding of the dynamic driving factors of river floods is crucial for explaining past flood variations
and improving future flood risk predictions (AghaKouchak et al., 2020; Hall et al., 2014; Sterling et al., 2013).
Deep learning models, with their capacity to capture complex nonlinear relationships between variables, have
become an effective tool for hydrological simulation. However, what's more valuable is the ability to mine in-
sights from robust feature fittings to enhance our understanding of hydrological knowledge (C. Shen et al., 2023;
Tsai et al., 2021). Employing interpretability techniques on large‐sample hydrometeorological variables with
temporal attributes and causal relationships allows for the consideration of the entire process of flood formation.
Xu et al. (2022) demonstrated how deep learning models for time series prediction make decisions about future
flows, with sliding windows of a time step length being crucial for each moment's prediction. This is reflected in
the SHAP calculations of this study, which take into account past information for future flow predictions,
ensuring that the mechanism of any variable that had an impact in the past can be quantified at each moment.
Interpretable methods provide a pathway to a deeper understanding of how machine learning works, disen-
tangling relationships between attributes or variables and enabling people to comprehend them. This is a data‐
driven reverse deduction approach that generates new insights into hydrological features. It has the potential
to be extended to more fields in the future to reveal underlying natural physical processes, such as revealing how
human activities under carbon emission scenarios affect regional hydrological cycles, identifying which factors
truly influence the increase in precipitation in urbanized areas, and understanding how vegetation responds to
moisture forcing. The proposed technical framework offers a feasible approach to deriving underlying physical
laws from big data and enriching our knowledge base.

5. Conclusions
The formation of floods is often triggered under the complex influence of multiple variables, occurring in parallel
across different spatial and temporal scales. To reveal the dynamic driving factors of floods, we propose a new
interpretable framework based on time series deep learning that quantifies the response of the flood generation
process to hydrometeorological variables at different times. Precise flood simulation is a prerequisite for the
application of interpretability techniques, and the Informer model, with its sparse attention mechanism sensitive
to extreme values, was chosen for pre‐training on a large sample. Under the same 10‐fold cross‐validation, the
Informer achieved more robust and reliable flood peak simulation results compared to other deep learning models
(with NSE exceeding 0.6 in 70% of the watersheds). We used SHAP to explain the decision‐making process of the
Informer, identifying three main patterns of flood triggers across 482 US watersheds, corresponding to dominant
driving factors: precipitation, excess soil water, and snowmelt. Precipitation is primarily found along the western
coast and in eastern inland areas, while excess soil water is more prevalent in central regions. The spatial dis-
tribution of dominant driving factors reflects changes in watershed geography and climate characteristics,
consistent with findings from earlier studies. High values of precipitation, soil water, and snow depth all
contribute to flood generation. Notably, variables from different times before a flood can have significantly
different impacts, reflected in opposing mechanisms (either promoting or inhibiting), and it is not always the
variables closest to the flood event that play a crucial role. In precipitation‐dominated watersheds, precipitation
significantly controls flood occurrences, particularly in the western coastal and eastern inland regions, with the
primary influence stemming from precipitation within the past day. In contrast, in soil water and snow‐dominated
watersheds, the dominant factors are more pronounced in the southern coastal and Rocky Mountain regions. The
generation of floods is not entirely influenced by the conditions of the past day, but more by the conditions of the
past 2–6 days. We further discovered that over 40% of the watersheds experienced abrupt changes in the dominant
driving factors for floods during 1981–2020, with watersheds dominated by precipitation undergoing more
significant changes, consistent with responses to climate change. Furthermore, different values of variables lead
to varying interactive effects, which also manifest as diverse dynamic effects on flood events over time. Advanced
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interpretable deep learning, through this reverse deduction approach, by exploring the inner workings of pre‐
trained deep learning models, uncovers potential hydrological information over long sequences. Importantly, it
transforms deep learning from merely being a black box tool for fitting nonlinear relationships into an effective
means for gaining new insights into hydrological features, helping hydrologists better understand natural physical
processes.

Data Availability Statement
The Carvan data set is derived from Kratzert et al. (2024), which includes daily hydro‐meteorological time series
data for 482 watersheds across the United States. The final data retrieval date was February 2024. The deep
learning Informer code used for framework modeling in the study is sourced from Zhou et al. (2021) and available
at GitHub (https://github.com/zhouhaoyi/Informer2020). The code for the interpretability technique SHAP is
sourced from S. Lundberg and Lee (2017) and available at GitHub (https://github.com/shap/shap).
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