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Introduction

Determination of gravitational fields generated by various planetary bodies (including Earth, Earth’s Moon or
neighboring planets) represents a crucial task in modern geodesy and planetodesy. In most cases, calculation
of gravitational field quantities is based on the spherical approximation of planetary bodies. Spherical
approximation is valid for bodies with shapes close to sphere or in cases when lower gravitational field
quantities estimation accuracy is acceptable.

On the other hand, shapes of planetary bodies are often closer to spheroids. The spheroidal approxi-
mation is essential as it significantly extends region near the surface of flattened planetary bodies (Fig. 1)
allowing safe computation without any divergence issues.

This contribution describes theoretical and numerical aspects for the gravitational field modelling of
planetary bodies using spheroidal harmonic synthesis. We focus on the substitution of singular expressions
(containing partial derivatives with respect to reduced spheroidal latitude β and trigonometric functions
dependent on β) occuring in calculations by non-singular recursive expressions. We consider both oblate and
prolate spheroids. However, for brevity, we focus exclusively on oblate geometry in this poster.

Fig. 1: Difference between spherical (blue) and spheroidal (red) approximation for the dwarf planet Ceres
(left) and asteroid Vesta (right).

Theoretical background

Principles of deriving the relevant formulas can be described using Eq. (1) that represents the first-order partial
derivative of gravitational potential V with respect to β (Vβ), as it is the most concise equation allowing to
explain all important parts of the above-mentioned process solving singularities. The specific form of the
equation is as follows:
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where (u,Ω) are the Jacobi one-parametric coordinates of a computational point. GM is the geocentric
gravitational constant, Ro and Ri are suitable scale factors, n and m stand for degree and order of the spheroidal
harmonic expansion. C̄o

n,m and C̄i
n,m denote the normalized (geodetic norm) spheroidal harmonic coefficients.

Pn,|m| and Qn,|m| define the un-normalized (P̄n,|m| for normalized, respectively) associated Legendre functions
of the first and the second kind. ε stands for the linear eccentricity calculated from major and minor semi-axes
of the reference spheroid a and b, L =

√
u2 + ε2 sin2 β and:

Km(λ) =

{
cosmλ, m ≥ 0,
sin |m|λ, m < 0.

(2)

Equation (1) consists of 2 main parts:
• Calculation outside the confocal spheroid with minor semi-axis u (upper part),
• Calculation inside the confocal spheroid with minor semi-axis u, but outside gravitating masses (lower part).
In case of Eq. (1), it was necessary to apply specific recursions substituting ∂

∂β P̄n,|m|(sin β). The final form of
Eq. (1) after the implementation of these recursions is:
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where δn,m is the Kronecker delta. Only the outer part of Eq. (3) is presented, as implementation of recursions
for the inner part is analogical and can be deduced from Eqs. (1) and (3).

Equivalent equations (singular and non-singular) were derived for all other derivatives of the gravita-
tional potential up to the third order (3 for the gravitational gradient vector, 6 for the second-order
gravitational tensor and 10 for the third-order gravitational tensor).

Numerical experiment

Equations described in previous section, together with all analogical equations concerning other derivatives
of the gravitational potential were implemented into C language scripts. Using these scripts, it was possible
to carry out an experiment testing correctness of both theory and its implementation. The basic assumption
was that comparison between singular and non-singular expressions should indicate very low differences
with exception of polar regions, where the singular solution accuracy was expected to decrease rapidly. To
compare results over non-polar region (−80◦ ≤ β ≤ 80◦), testing grids were synthesized from EGM2008 to
the maximal degree n = 360 over the 0.1◦ equiangular grid. The differences were studied for 10 third-order
derivatives of the gravitational potential. Resulting statistics are available in Tab. 1. All signal values
concerning comparison were in 10−15m−1s−2.

Tab. 1: Statistics of the differences over non-polar region. All values are given in 10−27m−1s−2.
Derivative mean std min max Derivative mean std min max

Vuuu 0.01 8.87 −111.40 94.96 Vuλλ 0.00 3.04 −35.00 36.08

Vuuβ −0.03 7.99 −85.15 100.10 Vβββ −0.02 7.20 −93.04 70.00

Vuuλ 0.00 3.86 −42.75 45.13 Vββλ 0.00 1.91 −25.95 20.25

Vuββ −0.02 7.54 −95.10 111.53 Vβλλ 0.00 1.44 −19.06 17.14

Vuβλ 0.00 2.38 −36.46 31.51 Vλλλ 0.00 2.79 −66.40 68.83

In the next step, the rapid increase of differences in regions close to the poles showing innacuracies in singular
solution had to be proven. Some of the derivatives without dependencies on β indicated no singularities. How-
ever, with the increase in dependence there was also significant increase in order of magnitude of corresponding
differences as demonstrated in Fig. 2.

Fig. 2: Differences (log10 of absolute differences) between the singular and the non-singular solution near
the North Pole (89.8◦ ≤ β ≤ 90◦) for selected derivatives.

To observe detailed discrepancies, we have examined differences along meridians (with 1◦ step between
meridians) converging to the North Pole (88◦ ≤ β < 90◦). Example of above-mentioned discrepancies for
the derivative Vλλλ is depicted in Fig. 3. Similar behaviour was also observed for other derivatives with
singularities in original expressions.

Fig. 3: Differences between the non-singular and the singular expressions for Vλλλ close to the North Pole.
y axis represents common logarithm of maximal error observed for given latitude.

Results of described experiment confirmed correctness of derived non-singular equations and their soft-
ware implementation over non-polar regions, where the comparison with singular solution showed only
negligible discrepancies. On the other hand, the increase of differences between singular and non-singular
expressions over the polar regions complies with assumption about singular solution limitations.

Summary

• We have derived equations for the calculation of the gravitational potential and its derivatives up to the
third order using the spheroidal harmonic functions method.

• We have conducted numerical experiment testing correctness of newly implemented non-singular expressions.
• Results indicate consistency of singular and non-singular solution over non-polar regions and increase of

differences over polar regions.
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