HS2.5.3: EGU25-1051

A Kalman Filter approach for reducing uncertainty in Global Evapotranspiration: Advancing global water budget closure

Shubham Goswami¹, Chirag Ternikar¹, Rajsekhar Kandala¹, Netra S Pillai², Vivek Kumar Yadav³, Abhishek⁴, Jisha Joseph⁵, Subimal Ghosh⁶ and Bramha Dutt Vishwakarma^{2,3}

Outline

• Importance of Evapotranspiration (ET):

ET is a critical component of the global water cycle

• Diversity of ET Products:

Over 8 approaches and 90+ global ET products available in the literature

• Challenges:

Large uncertainties in global ET estimates No single "best" ET product for all conditions

• Proposed Framework:

KF-ET to reduce uncertainties in water-budget-based ET estimates

• Validation Approaches:

ET products assessment using diverse methods

Various ET products

- Numerous ET products exist in literature
- No single best global ET product
- Multiple products for multiple users

Water Resources Research[•]

RESEARCH ARTICLE

10.1029/2024WR037608

Key Points:

- Global ET estimates show large discrepancies in magnitude, trends and spatial patterns across 90 state-of-theart data sets
- There is no single best global ET data set suitable for all applications and locations, the choice depends on the intention and region of study
- Dominant controls on ET differ across categories spatially; constraining estimates via Budyko and novel hybrid modeling can enhance confidence

Reconciling Global Terrestrial Evapotranspiration Estimates From Multi-Product Intercomparison and Evaluation

Yaoting Cai¹, Qingchen Xu¹, Fan Bai¹, Xueqi Cao¹, Zhongwang Wei¹, Xingjie Lu¹, Nan Wei¹, Hua Yuan¹, Shupeng Zhang¹, Shaofeng Liu¹, Yonggen Zhang², Xueyan Li³, and Yongjiu Dai¹

¹Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou, China, ²School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China, ³Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Science, Guangzhou, China

Spatial-temporal patterns of land surface evapotranspiration from global products

 Ronglin Tang ^{a b}, Zhong Peng ^{a b} A ⊠, Meng Liu ^c, Zhao-Liang Li ^{c a} A ⊠, Yazhen Jiang ^{a b},

 Yongxin Hu ^b, Lingxiao Huang ^{a b}, Yizhe Wang ^{a b}, Junrui Wang ^{a b}, Li Jia ^d, Chaolei Zheng ^d,

 Yongqiang Zhang ^e, Ke Zhang ^f, Yunjun Yao ^g, Xuelong Chen ^h, Yujiu Xiong ⁱ, Zhenzhong Zeng ^j,

 Joshua B. Fisher ^k

Review

Remote Sensing of Environment Volume 304, 1 April 2024, 114066

Methodology

Fig. 3: Flow Chart of Methodology

Methodology

Table 1: Stepwise process for KF-ET

Iter.					
No	ET	UET	KG	ET^{u}	UET ^u
				ET_0 (Initialization)	UET_0 (Initialization)
1	ET_1	UET_1	$KG_1 = UET_0/(UET_0 + UET_1)$	$ET_1^u = ET_0 + KG_1 \times (ET_1 - ET_0)$	$UET_1^u = (1 - KG_1) \times UET_0)$
2	ET_2	UET_2	$KG_2 = UET_1^u / (UET_1^u + UET_2)$	$ET_2^u = ET_1^u + KG_2 \times (ET_2 - ET_1^u)$	$UET_2^u = (1-KG_2) \times UET_1^u)$
3	ET_3	UET_3	$KG_3 = UET_2^u / (UET_2^u + UET_3)$	$ET_3^u = ET_2^u + KG_3 \times (ET_3 - ET_2^u)$	$UET_3^u = (1-KG_3) \times UET_2^u)$
•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••
•••	•••	•••			
94	ET_{94}	UET_{94}	$KG_{94} = UET_{93}^u / (UET_{93}^u + UET_{94})$	$ET_{94}^{u} = ET_{93}^{u} + KG_{94} \times (ET_{94} - ET_{93}^{u})$	$UET_{94}^u = (1 - KG_{94}) \times UET_{93}^u)$
95	ET_{95}	UET_{95}	$KG_{95} = UET_{94}^{u} / (UET_{94}^{u} + UET_{95})$	$ET_{95}^{u} = ET_{94}^{u} + KG_{95} \times (ET_{95} - ET_{94}^{u})$	$UET_{95}^u = (1 - KG_{95}) \times UET_{94}^u)$
96	ET_{96}	UET ₉₆	$KG_{96} = UET_{95}^{u}/(UET_{95}^{u} + UET_{96})$	$ET_{96}^{u} = ET_{95}^{u} + KG_{96} \times (ET_{96} - ET_{95}^{u})$	$UET_{96}^{u} = (1 - KG_{96}) \times UET_{95}^{u})$

Results: Uncertainty Analysis

4: (a) and (b) Uncertainty in ERA5 and KF-ET based ET; (c) and (d) number of combinations required to bring KF-ET uncertainty <2mm/month

Fig. 5: Monthly Climatology Variation of KF-ET

Results: Point scale evaluation

Fig. 6: Fluxnet Site location for Validation of KF-ET

Results: Point scale evaluation

Red line (best fit line), black line (1:1 line), R2, NSE, site-id and the IGBP LULC class are reported

Fig. 7: Scatter plots of Fluxnet-based ET data from 24 Fluxnet sites with respect to KF-ET gridded dataset

Fig. 8: Monthly Climatology of 6 ET products

References

- Cai, Yaoting, Qingchen Xu, Fan Bai, Xueqi Cao, Zhongwang Wei, Xingjie Lu, Nan Wei et al. "Reconciling global terrestrial evapotranspiration estimates from multi-product intercomparison and evaluation." *Water Resources Research* 60, no. 9 (2024): e2024WR037608.
- Goswami, S., Ternikar, C.R., Kandala, R., Pillai, N.S., Yadav, V.K., Joseph, J., Ghosh, S. and Vishwakarma, B.D., 2024. Water budget-based evapotranspiration product captures natural and human-caused variability. *Environmental Research Letters*, 19(9), p.094034. <u>https://doi.org/10.1088/1748-9326/ad63bd</u>
- Goswami, Shubham; Ternikar, Chirag Rajendra; Kandala, Rajsekhar; Pillai, Netra S.; Yadav, Vivek Kumar; Abhishek; et al. (2023). Evapotransiration using Kalman filter on water budget. figshare. Journal contribution. <u>https://doi.org/10.6084/m9.figshare.23800692.v3</u>
- Tang, R., Peng, Z., Liu, M., Li, Z.L., Jiang, Y., Hu, Y., Huang, L., Wang, Y., Wang, J., Jia, L. and Zheng, C., 2024. Spatial-temporal patterns of land surface evapotranspiration from global products. *Remote Sensing of Environment*, 304, p.114066.

Publication and blogposts

ENVIRONMENTAL RESEARCH

LETTER • OPEN ACCESS

Water budget-based evapotranspiration product captures natural and human-caused variability

Shubham Goswami, Chirag Rajendra Ternikar, Rajsekhar Kandala, Netra S Pillai, Vivek Kumar Yadav, Abhishek, Jisha Joseph, Subimal Ghosh and Bramha Dutt Vishwakarma^{*}

Challenges in Validating Large-Scale ET Estimates: A Comparative Study of Six Global Products

AGRICULTURAL ATMOSPHERIC SCIENCES CLIMATOLOGY (GLOBAL CHANGE) ENVIRONMENTAL SCIENCES GEODESY HYDROLOGY

د Chirag Ternikar 🕿 🕑, Shubham Goswami 🕑, Rajsekhar Kandala, Netra S Pillai, Vivek Kumar Yadav, Abhishek ., Jisha Joseph, Subimal Ghosh 📀, Bramha Vishwakarma

EGU Blogs » Divisions » Geodesy » Combining GRACE and Kalman filter to get superior evapotranspiration estimates

Combining GRACE and Kalman filter to get superior evapotranspiration estimates

Ternikar Chirag Rajendra, Shubham Goswami and Bramha Dutt Vishwakarma · October 25, 2024 · ECS, Guest post, Papers · No Comments

