

The seasonal cycle of the Arctic Ocean in a summer ice-free climate : changes and driving processes

Camille Le Gloannec¹, Rym Msadek¹, Camille Lique²

 $^1 {\rm CECI}$, Université de Toulouse, CERFACS/CNRS/IRD, Toulouse, France $^2 {\rm Laboratoire}$ d'Océanographie Physique et Spatiale (LOPS), Ifremer, Brest, France

legloannec@cerfacs.fr

entrainment in the ML

sos	sea surface salinity	psu
so	sea water salinity	psu
mlotst	ocean mixed layer thickness defined by sigma-t	m
uo	sea water x velocity	m.s ⁻¹
vo	sea water y velocity	m.s ⁻¹
wfo	net flux of liquid water entering the liquid ocean	kg.m ² .s ^{-1}
hfds	net surface downward heat flux at sea surface	W.m ⁻²

Annex : how does the sea surface temperature seasonal cycle change in the Beaufort region ?

CMIP6 models project :

- A summer ice-free Beaufort region in the next decades.
- An intensification of the SSS seasonal cycle, after the loss of summer sea ice.
 - $\star = \text{first year of september} \\ \text{ice free conditions}$

Annex : salinity mixed layer budget in the Beaufort region for the MPI model

TEMPERATURE TENDENCY = SURFACE FORCING (dominated by SW flux) + HORIZONTAL ADVECTION + DIFFUSION + ML ENTRAINMENT

The increase in SST seasonality is due to :

- An increase in surface forcing and diffusion + mixed layer entrainment seasonality...
- ...amplified once the region is september ice-free.

Annex : temperature mixed layer budget trends in the Beaufort region in CMIP6 models

TEMPERATURE TENDENCY = SURFACE FORCING (dominated by SW flux) + HORIZONTAL ADVECTION + DIFFUSION + ML ENTRAINMENT

Z Before ice free After ice free Multi Model Mean ACCESS-CM2 ACCESS-ESM1-5 CanESM5-CanOE CAS-ESM2-0 CESM2 CESM2-EV2 CMCC-CM2-SR5 CMCC-ESM2 CNRM-CM6-1 CNRM-FSM2-1 E3SM-1-1 FC-Earth3-CC FC-Earth3 GEDI -CM4 HadGEM3-GC31-LL MPI-ESM1-2-HR

Coherent picture across CMIP6 models :

- Robust increase of the surface forcing and diffusion + mixed layer entrainment seasonality.
- Weak changes of the horizontal advection seasonality.

Annex : salinity mixed layer budget seasonal cycle and annual mean for the MPI model

SALINITY TENDENCY = SURFACE FORCING (dominated by SEA ICE + HORIZONTAL ADVECTION + DIFFUSION + ML ENTRAINMENT

Annex : temperature mixed layer budget seasonal cycle and annual mean for the MPI model

TEMPERATURE TENDENCY = SURFACE FORCING (dominated by SW flux + HORIZONTAL ADVECTION + DIFFUSION + ML ENTRAINMENT

