Seismic noise characterization in NE Iberia
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Conclusions

- We identify a distinct pattern in the seasonal variations through cross-correlation analysis: the
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Fig. 2. Typical spectrogram at the CBRU  (LPSM) and the Short-Period Secondary
permanent station. Microseism (SPSM).

Polarization analysis
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CBRU - 2023 The results obtained from the
. 0 2 4 oolarization  analysis  suggest the LPSM source shows an increase in amplitude during the winter months, whereas the SPSM
: . — o MY oresence of distinct seismic sources for source does not exhibit any significant amplitude change.
| “ PM and LPSM, both pointing toward the
‘ North Atlantic Ocean, and a separate - We observe stronger amplitude attenuation along the profile parallel to the coast compared to
N v — — N, e oy mn S SEEEN] ¢ 3 source for SPSM, oriented toward the the orthogonal one. Additionally, we identify time periods in which this attenuation pattern is
Date of the year reversed and associated with completely different back-azimuths, suggesting that SPSM sources

Mediterranean Sea. This interpretation

_LPSM(0.1-0.25Hz) - sps (ozs éOSH‘) | e is further supported by the different in the Mediterranean Sea are both well-defined and dynamic.
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2 S energy patterns observed across the

° - : frequency ranges: PM and LPSM share a
similar energy pattern, whereas SPSM
exhibits a clearly distinct one.
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- Polarization analysis reveals the presence of distinct seismic sources for PM and LPSM on the
one hand, and SPSM on the other. This interpretation is further supported by the observed
energy patterns: PM and LPSM display similar behavior, clearly distinct from that of SPSM. We
also extend this analysis to stations distributed across the Mediterranean Sea and observe
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Fig. 7. Results obtained from the polarization analysis
plotted on a polar graph.
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