Combining Cosmogenic Surface-Exposure and OSL Rock Surface Dating on a rock glacier in the Uinta Mountains (USA)

Daniel Sperlich¹, Michael Meyer¹, Loïc Martin^{1,} Jeffrey Munroe² ¹ Department of Geology, University of Innsbruck, Austria (<u>daniel.sperlich@student.uibk.ac.at</u>, <u>michael.meyer@uibk.ac.</u> ² Department of Earth & Climate Sciences, Middlebury College, United States of America (<u>imunroe@middlebury.edu</u>)

Sharing is encouraged

Middlebury

EGU25-10798

Introduction

- Rock glaciers are common permafrost features
 - posing a geo hazardous risk
 - storing large amounts of water
 - long term dynamics and response to climate variability poorly understood
- Rock Surface exposure Dating:
 - Established method: Cosmogenic Radionuclide Dating (CRN, e.g. ¹⁰Be)
 - Novel method: Luminescence RSeD
- This Talk: Highlighting several sources for errors in preliminary data

Study Site + CRN-Ages

	Sample	¹⁰ Be age (a)	¹⁰ Be 2σ uncertainty (a)		
_	RG-2-1	6780	310		
	RG-2-2	3650	190		
	RG-2-3	8130	360		
	RG-2-4	6050	290		
	RG-2-6	10000	480		

Edited after Munroe et al. 2024

OSL RSeD Method

universität innsbruck

• Bleaching with Depth Model (Sohbati et al. 2011, Sohbati et al. 2012)

Target rock surface —

EGU25-10798

Results – Bleaching Profiles

- High scatter in x-axis due to surface roughness
- Depth resolution: \geq 0.6 mm

universität

nnsbruck

- x=0 and error hard to constrain
- Several cores per sample necessary
- Data of several cores can be merged for higher resolution

Results - Fitting

• Fitting to model with Python time machine software (Lehmann et al. 2018, Meyer et al. 2023)

•
$$L = L_0 e^{-\overline{\sigma \varphi_0} t e^{-\mu x}}$$

$$L$$
[1]Luminescence remaining at depth x L_0 [1]Maximum luminescence signal σ [cm²]Photoionisation cross section ϕ_0 [cm²a²]Photon flux at rock surface $\sigma\phi_0$ [a²¹]Effective luminescence signal decay rate t [a]Exposure time μ [mm²¹]Light attenuation coefficient x [mm]Depth

universität innsbruck

EGU25-10798

Results - Fitting

- Poor data density on slope: inaccurate estimation of $\sigma \phi_0$ and μ
- Variation of μ due to variation in rock color can be outruled
- \rightarrow Exclusion of 2 samples

Sample	σφ -1σ (a-1)	σφ (a-1)	σφ +1σ (a-1)	μ-1σ	µ (mm-1)	μ+1σ
RG-2-1	4.0	11.9	7.0	0.10	2.45	0.12
RG-2-2	30.3	48.1	81.8	0.42	4.11	0.48
RG-2-3	20.4	55.2	39.5	0.14	3.27	0.17
RG-2-4	86.6	157.9	178.4	0.17	2.43	0.16
RG-2-6	104.3	258.6	216.6	0.10	2.46	0.12

Results – Age Comparison

Age comparison of CRN and OSL RSeD

	10-			USL NSED	
Sample	^{1°} Be age (a)	26 uncertainty (a)	-1σ (a)	age (a)	+1σ (a)
RG-2-1	6780	310	280	538	280
RG-2-4	6050	290	3323	7028	3881
RG-2-6	10000	480	9319	16957	10783

test

• Average $\sigma\phi$ and μ

 \rightarrow Exclusion of RG-2-4

• RG-2-1 and RG-2-6 fit within 1σ

Conclusion

- RG-2 is a perfect testing ground for developing Luminescence RSeD
- Ideal sampling procedure
 - OSL RSeD first(micro-erosional features, surface roughness, lichen cover, surface orientation)
 - CRN afterwards
- Ideal RSeD sample preparation (smooth sample surface, multiple cores per sample, highest possible slicing resolution)
 - Resolution must be improved
 - Fitting must be improved

Perspective

- Alternative CRN-dated RG in French Alps (Lehmann et al. 2022) for testing imaging approach using EMCCD camera and IRSL signals (Fsp)
- Investigate how bleaching front develops in samples with high surface roughness using EMCCD camera (Fsp)

Thank you for your attention!

Daniel Sperlich MSc Student University of Innsbruck

daniel.sperlich@student.uibk.ac.at

References

Aerial Photo of RG-2 by Jeffrey Munroe

Gliganic, L. A., McDonald, J. & Meyer, M. C. Luminescence rock surface exposure and burial dating: a review of an innovative new method and its applications in archaeology. *Archaeol Anthropol Sci* **16**; 10.1007/s12520-023-01915-0 (2024).

Lehmann, B. *et al.* Alpine rock glacier activity over Holocene to modern timescales (western French Alps). *Earth Surf. Dynam.* **10,** 605–633; 10.5194/esurf-10-605-2022 (2022).

Lehmann, B. *et al.* Alpine rock glacier activity over Holocene to modern timescales (western French Alps). *Earth Surf. Dynam.* **10,** 605–633; 10.5194/esurf-10-605-2022 (2022).

Lehmann, B., Valla, P. G., King, G. E. & Herman, F. Investigation of OSL surface exposure dating to reconstruct post-LIA glacier fluctuations in the French Alps (Mer de Glace, Mont Blanc massif). *Quaternary Geochronology* **44**, 63–74; 10.1016/j.quageo.2017.12.002 (2018).

Meyer, M. C., Gliganic, L. A., Jain, M., Sohbati, R. & Schmidmair, D. Lithological controls on light penetration into rock surfaces – Implications for OSL and IRSL surface exposure dating. *Radiation Measurements* **120**, 298–304; 10.1016/j.radmeas.2018.03.004 (2018).

Munroe, J. S., Laabs, B. J. C., Corbett, L. B., Bierman, P. R. & Handwerger, A. L. Rock Glacier Movement and Debris Transport Over Annual to Multi-Millennial Timescales. *JGR Earth Surface* **129**; 10.1029/2023JF007453 (2024).

Sohbati, R., Murray, A., Jain, M., Buylaert, J.-P. & Thomsen, K. Investigating the resetting of OSL signals in rock surfaces. *Geochronometria* **38**, 249–258; 10.2478/s13386-011-0029-2 (2011).

Sohbati, R., Murray, A. S., Chapot, M. S., Jain, M. & Pederson, J. Optically stimulated luminescence (OSL) as a chronometer for surface exposure dating. *J. Geophys. Res.* **117**; 10.1029/2012JB009383 (2012).

universität innsbruck