Assessing the Geological Plausibility of Machine Learning **Borehole** Interpretations

Sebastián Garzón^{100,} Willem Dabekaussen²⁰⁰, Eva De Boever²⁰⁰, Freek Busschers²⁰, Siamak Mehrkanoon^{30,} Derek Karssenberg¹⁰

j.s.garzonalvarado@uu.nl

¹ Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
² TNO - Geological Survey of the Netherlands, Utrecht, The Netherlands
³ Department of Information and Computing Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands

Machine learning (ML) offers an alternative to expert and rule-based interpretation of borehole data into stratigraphic units. While ML predictions may perform well on traditional metrics (e.g. accuracy), they often require post-processing to adhere to geological principles. In this work, we propose and test metrics that capture geological plausibility to support model selection.

1. Propose a set of **evaluation metrics** to assess the **geological plausibility** of ML predictions.

2. Test the metrics in a case study to evaluate their performance compared to traditional metrics.

Methodology

1. METRICS DEVELOPMENT

We introduce three sets of domain-specific evaluation metrics ('geology-informed metrics') focused on the geological plausibility of **lithostratigraphic unit predictions**. Predictions are assessed based on unit position, geographical extent, and sequence.

Transition Match F1- Score

Borehole [b_o]

Sequence Alignment Score Borehole [b_Q]

0.67

Transition Validation Score

Borehole [b_o]

Interpretation evaluation (Borehole: B52C0196)

	Traditional matrice				Geology-informed metrics							
	Traditional metrics			Extent metrics		Sequence metrics		Position metrics				
	Accuracy (Acc)	Cohen's Kappa	F1-Score (F1)	Weighted F1 - Score (W-F1)	Unit Match F1-Score (UM-F1)	Unit Extent Validation Score (UEVS)	Sequence Alignment Score (SAS)	Transition Match F1- Score (TM-F1)	Transition Validation Score (TVS)	MAE Top (m)	MAE Centre (m)	MAE Bottom (m)
NN-1 🕂	0.86	0.81	0.76	0.84	1	1	1	1	1	7.3	4	7.3
RF-1 -	0.89	0.86	0.79	0.87	0.92	1	0.86	0.91	1	3.4	2.8	3.4
NN-2 🔶	0.70	0.58	0.61	0.65	0.92	1	0.33	0.57	0.64	20.2	14.3	19
RF-2 🛨	0.17	0.05	0.14	0.17	0.85	0.85	0.04	0.21	0.33	48.7	78.9	188.1
NN-3 🔶	0.76	0.66	0.76	0.73	1	1	0.46	0.75	0.71	14.1	10.4	11.9
RF-3 🔶	0.91	0.87	0.82	0.89	1	1	0.35	0.75	0.63	5.7	3	5
				Metric Score	at match]				۸ – ۲۰۰	Aetric Score		

The information has been compiled with the utmost care but no rights can be derived from its contents

High model performance does not guarantee geological plausibility. Domain-specific metrics are essential for validating subsurface predictions.

2. CASE STUDY:

We trained a **Random Forest (RF)** and a Neural Network (NN) to predict lithostratigraphic units using **1.400** standardised lithological descriptions of boreholes in the **Roer Valley Graben**. We used three different sets of features as predictors.

SET	Set Name	# Features	Example
1	Location features	3	Latitude, Longitude & Depth
2	Lithological features	25	Main lithology, colour, grain size
3	All features	28	Location + Lithological Feature Sets

We performed **5-fold cross-validation** and evaluated different hyperparameters for six model configurations: two models (RF and NN) with three feature sets (1, 2, and 3). The hyperparameters tested included 'mtry' for **RF** and learning rate, number of LSTM units, and attention layer heads for **NN**.

Comparison of metrics across 5-fold cross-validation. Each point shows the mean value of the best hyperparameter configuration per Set (1, 2, or 3) and method (Random Forest: RF, Neural Network: NN). Error bars represent one standard deviation above and below the mean.

1. Geology-informed metrics reveal model **performance differences** that traditional metrics miss.

Incorporate metrics during training

Integrate the proposed evaluation metrics directly into the **model's loss function** to guide learning toward more **geologically plausible** outcomes that adhere to known constraints (e.g. stratigraphic sequence).

References * Selected figures adapted from Garzón et al. (under review, 2025) - Assessment of automated stratigraphic interpretations of boreholes with geology-informed metrics

Borehole Fold Cross-validation • 2 • 5

Study Area

Geologic cross-section

	Roer Valley Graben	A
to Amsterdam Datum (m) -100 -500 -500	BX ST SY PZWA KI	
ance ³⁰⁰ -300	00	
eight re Ordn	BRVI	
Ť 0	9 18 27	36
	Distance in km	

Results (5-fold cross-validation)

Conclusions

2. Using **domain-specific evaluation** improves **model selection** for subsurface modelling.

Future steps

Broaden spatial coverage

TNO– Geological Survey of the Netherlands maintains ~600.000 boreholes, with expert interpretations for ~5%. ML can enhance or **replace** the existing (time-consuming) rulebased methods.