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Abstract This study assesses the potential of regional microwave backscatter data assimilation (DA) in
AquaCrop for the first time, using NASA's Land Information System. The objective is to assess whether the
assimilation setup can improve surface soil moisture (SSM) and crop biomass estimates. SSM and crop biomass
simulations from AquaCrop were updated using Sentinel‐1 synthetic aperture radar observations, over three
regions in Europe in two separate DA experiments. The first experiment concerned updating SSM using VV‐
polarized backscatter and the corrections were propagated via the model to the biomass. In the second
experiment, the DA setup was extended by also updating the biomass with VH‐polarized backscatter. SSM was
evaluated with local in situ data and with downscaled Soil Moisture Active Passive (SMAP) retrievals for all
cropland grid cells, whereas crop biomass was compared to SMAP vegetation optical depth and the Copernicus
dry matter productivity. The assimilation showed mixed results for root mean square error and Pearson's
correlation, with slight overall improvements in the (anomaly) correlations of updated SSM relative to
independent in situ and satellite data. By contrast, the biomass estimates obtained with backscatter DA did not
agree better with reference data sets. Overall, the SSM evaluation showed that there is potential in using
Sentinel‐1 backscatter for assimilation in AquaCrop, but the present setup was not able to improve crop biomass
estimates. Our study reveals how the complex interaction between SSM, crop biomass and backscatter affect the
impact and performance of DA, offering insight into ways to optimize DA for crop growth estimation.

Plain Language Summary This study evaluates if using observations from a microwave satellite,
Sentinel‐1 (S1) can improve model simulations of a crop model AquaCrop, specifically for both soil moisture
and crop biomass, over different regions in Europe. For each day in which S1 observations were available over
the region, the modeled soil moisture and biomass were “updated” based on these observations, which over time
is expected to reduce the model error and uncertainty. This iterative process is called data assimilation (DA) and
was executed in a model framework called NASA's Land Information System. Two DA experiments were held.
In the first DA experiment, only soil moisture was updated by S1 observations, but the changes in soil moisture
were expected to also affect the biomass simulations compared to no DA model runs. In the second DA
experiment, both the soil moisture and biomass were updated with S1 data. When comparing the results with
independent data sets, the assimilation showed mixed results. The soil moisture showed slight improvements
after DA, but the biomass estimates did not improve. Given the complexity of S1 data over agricultural areas,
more research is required to optimally perform DA before this setup is able to improve crop growth estimation.

1. Introduction
Soil moisture and vegetation biomass are key components for crop monitoring. In low‐ and mid‐latitude regions,
crop development in agricultural systems is largely dependent on soil moisture availability, whereas radiation is
more critical at higher latitudes. Yet, the timing and amount of precipitation, and thus the soil moisture avail-
ability, are crucial for rain‐fed crops over the globe. With the expected growing impact of changing climatic
temperature and water distributions, regional perspectives for environmental management and economic planning
are needed (Faivre et al., 2009; Jones et al., 2017). In this light, crop growth models are continuously adapted to
adequately help inform agronomists and policymakers. Most crop models were initially developed for point‐
based applications; assuming homogeneous conditions of soil, crop, and management over the field. These
crop models are now more frequently used in a spatially distributed way, also known as spatialized or gridded
crop models (Busschaert et al., 2022; de Roos et al., 2021; Elliott et al., 2015; Holzworth et al., 2015; Man-
ivasagam & Rozenstein, 2020).
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The quality of spatialized crop models is largely dependent on the quality of the spatial input data (Hansen &
Jones, 2000), for example, meteorological forcings, crop and soil information. These spatial data sets, especially
continental or global products, are difficult to validate with ground truth data. For agricultural fields, the decisions
based on the local farmer's knowledge of crop and field management add another level of heterogeneity in space
and time that is difficult to capture in large‐scale spatialized model setups. At the field scale, spatialized models
will therefore mostly be more uncertain than point‐based model applications (X. Jin et al., 2018).

One way to correct for model errors is data assimilation (hereafter DA). Satellite‐based DA can help reduce both
spatial and temporal errors in regional models by updating (state) variables or model parameters. DA into gridded
crop models is commonly done using optical‐derived indices, such as leaf area index (LAI) or the normalized
difference vegetation index (NDVI), to improve model estimates of crop biomass (Claverie et al., 2009; H. Huang
et al., 2022) or yield (H. Fang et al., 2008; N. Jin et al., 2022; Ziliani et al., 2022). Alternatively, the assimilation of
microwave‐based data can be used to update either soil moisture or vegetation. Microwave remote sensing has a
significant advantage over optical imagery of being barely affected by cloud cover and providing more regular
observations in space and time. Microwaves with longer wavelengths (e.g., L‐band) have deeper penetration
abilities, making them very suitable for soil moisture updating in crop models (Chakrabarti et al., 2014). Shorter
wavelengths, such as C‐ and X‐band, are more sensitive to vegetation and can be valuable for updating crop
phenology or production (Revill et al., 2013; Shan et al., 2022; Steele‐Dunne et al., 2019; Wiseman et al., 2014),
but have also been used in relation to retrieving soil moisture (Bhogapurapu et al., 2022), irrigation (Modanesi
et al., 2022) and agricultural drought assessment (Van Emmerik et al., 2015).

The extraction of information from microwave observations is not trivial; the signal is influenced by a variety of
land surface elements that are not constant over time. Over croplands, the signal is affected by a combination of
plant structure, height and volume, soil surface roughness, texture, and density, and the effects also depend on the
local incidence angle. Vegetation scattering generally increases with growing canopy volume and is further
affected by the orientation of the vegetation (McNairn & Shang, 2016). Hence, the sensitivity of the microwave
signal to soil moisture decreases during the plant growing season, and in case of dense vegetation, the C‐band
microwave sensitivity to soil moisture can even become negligible.

ESA's and Copernicus Sentinel‐1 (hereafter S1) satellite mission provides active microwave synthetic aperture
radar (SAR) observations in C‐band at a relatively high spatial resolution (5–20 m) in co‐polarization (vertical‐
vertical; VV) and cross‐polarization (vertical‐horizontal; VH). The VV co‐polarized backscatter has been proven
to be sensitive to soil moisture (Palmisano et al., 2020; Rains et al., 2021), especially when there is little signal
disturbance by vegetation. The S1 observations have therefore been used in several studies to observe spatial and
temporal soil moisture patterns (Balenzano et al., 2021; Bauer‐Marschallinger et al., 2018). The cross‐
polarization data often show a higher sensitivity to vegetation, as plant structures can cause an increase in vol-
ume scattering within the vegetation medium, multiple scattering on vegetation elements, and vegetation‐ground
scattering interactions, enhancing the depolarization of the incident wave (McNairn & Shang, 2016). Due to their
higher complexity, the assimilation of SAR data for updating vegetation is often combined with optically derived
indices (Allies et al., 2022; Betbeder et al., 2016; J. Huang et al., 2019; Prévot et al., 2003). The use of SAR alone
to update both soil moisture and vegetation biomass in crop models is still relatively unexplored.

For this study, a pilot version of the integration of the Food and Agricultural Organization (FAO) crop model
AquaCrop V7.0 in NASA's Land Information System (LIS) is evaluated for the first time, as an assimilation
system using Sentinel‐1 backscatter observations. LIS is a software framework developed for high‐performance
land surface modeling and DA (Kumar et al., 2008; Peters‐Lidard et al., 2007). LIS V7.4 currently only contains
LSMs, which describe large‐scale interactions of water and energy fluxes between the Earth's surface and at-
mosphere, based on detailed physically‐based relationships (Fisher & Koven, 2020). Applications of LSMs in
agriculture, especially for simulating dynamic crop growth, are not common because the vegetation is considered
as a component of the water and energy cycle with limited quantitative information about crop yield. The ad-
vantages of current crop models over most traditional LSMs are that they consider more detailed crop devel-
opment stages, quantify crop production in terms of crop biomass and yield for a large set of crops, and include
various land management options. Including a crop model into the LIS framework therefore provides new op-
portunities for agricultural research.

This study explores the possibilities of S1 backscatter observations for regional crop model updating in a pilot
version of the integration of AquaCrop in LIS for the first time and evaluates opportunities to optimize the system.
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The main objectives of the S1 DA experiments are to assess if predictions of soil moisture and biomass can be
improved by: (a) soil moisture state updating using backscatter observations in VV polarization, and (b) updating
both soil moisture and biomass via joint (but independent) assimilation of respective S1 VV and VH polarized
observations.

This paper is structured as follows; Section 2 covers the methodology, describing the model system setup, used
data sets, and evaluation metrics. In Section 3, the results of the two experiments are analyzed and discussed. The
DA diagnostics are analyzed in Section 4 to gain a better understanding of the system setup, and in Section 5 the
study setup and model system are evaluated, and the potentials and limitations are discussed. Finally, a
concluding Section 6 summarizes the main findings.

2. Materials and Methods
2.1. Study Setup

2.1.1. Study Areas

Three European study areas were selected based on their different climates and available in situ surface soil
moisture (hereafter SSMismn) measurements from the International Soil Moisture Network (ISMN; Dorigo
et al., 2011), as presented in Figure 1. From north to south, the first area (area 1) is situated in the Ruhr region of
West Germany, covering in situ data from the TERENO network (Bogena et al., 2018; Zacharias et al., 2011), the
second area (area 2) covers southern France with in situ points from the SMOSMANIA network (Albergel
et al., 2008; Calvet et al., 2007) and the third area (area 3) is situated in northwest Spain and includes in situ data
from the REMEDHUS stations (González‐Zamora et al., 2019). The selected areas vary strongly in extent and
were simulated with a spatial resolution of 30 arcsec (1 km at equator).

For each area, a mask was applied for pixels containing less than 50% rain‐fed agriculture, as defined by the
CORINE land cover map of 2018 (Büttner, 2014). The same generic C3 crop from de Roos et al. (2021) and de
Roos et al. (2023), was applied in this study for all areas, which showed to be capable of estimating the daily
biomass productivity in Europe over time with good Pearson correlations (mean of 0.8). This approach was
selected as an area of 1‐km spatial resolution often contains a mix of crops in European fields instead of a single

Figure 1. Locations of the three study areas with an indication of their soil textural classes, and in situ points as red dots. A
mask has been applied to exclude all land cover classes other than non‐irrigated cropland.
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crop type. The option of representing fractional vegetation within a pixel, as is often done in LSMs, was ignored in
this study due to the lack of annual crop type maps at the desired scale and resolution. Any systematic biases due
to this assumption will be ignored within the DA system, because it is only designed to update the temporal
variation in soil moisture and biomass (see Section 2.1.3).

2.1.2. The AquaCrop Model

The AquaCrop model was originally developed by the FAO for field‐scale applications to simulate crop
development over a homogeneous field. AquaCrop is a water use efficiency model, linking biomass production to
crop transpiration (Steduto et al., 2009). The water availability in the root zone is therefore a crucial component of
the model as it is used to estimate drought stress. The model uses a conceptual water balance equation as described
in Raes et al. (2006, 2009), considering incoming fluxes of precipitation, irrigation and capillary rise, and out-
going fluxes of runoff, evaporation, transpiration and deep percolation at the daily timescale. Losses by leaf
interception are not included, as it is expected that the error on the soil water balance and biomass production is
larger than the errors caused by a poor estimate of the intercepted water.

To compute the vertical water distribution within the root zone, the soil profile is divided into 12 equally sized
compartments. For each compartment, the model computes the volumetric soil moisture content θ (m3m− 3) (Raes
et al., 2006) as shown in Figure 2. The drainage, which occurs when the water content exceeds field capacity
(θFC), is based on a function depending on the saturated hydraulic conductivity. For this study, no groundwater
table is included, therefore capillary rise is not simulated and the lower boundary of the water balance is free
drainage. Irrigation is also not considered for this study. In short, the soil water content θli in layer l at day i is
equal to that of the previous day plus changes (Δθ), resulting from the effective incoming precipitation, evap-
oration and transpiration, and in case θli exceeds θFC, also drainage. The water from the precipitation propagates
through the subsequent compartments as infiltration, which only happens in wet soil, and the drainage is assumed
constant throughout the soil profile for a uniform soil. More detailed information about the water balance
equations can be found in Raes et al. (2022) and de Roos et al. (2021).

Figure 2. Schematic overview of the AquaCrop soil moisture distribution with incoming and outgoing fluxes relevant to this study (excluding capillary rise and
irrigation). The function describes the soil moisture distribution in the first soil compartment, with i as daily time step and Δt as time difference between the simulated
day and previous day. The function is adapted from the AquaCrop calculation manual in Raes et al. (2022).
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Crop development is simulated by the fraction of land covered by vegetation, that is, the canopy cover (CC),
instead of the more common LAI (Raes et al., 2009). The CC is used to compute transpiration, by adjusting the
evapotranspiration with a crop coefficient, which is proportional to CC adjusted for micro‐advective effects
(CC∗). The above‐ground cumulative dry biomass (CB) is then derived from the transpiration (Tr) using a water
productivity (WP∗; g m− 2) factor, which is a parameter describing the amount of dry biomass produced over a unit
area. WP is only significantly different when normalized for climate (by dividing it over the reference ET),
between C3 (15–20 g m− 2) and C4 (30–35 g m− 2) crops. Because the vegetation in this study is simulated as a C3
crop, the WP parameter is set to 17 g m− 2 (0.17 t ha− 1). Apart from normalizing for climate, WP∗ is normalized
for CO2, considering the positive effect of annual increase in atmospheric CO2 on crop productivity using a
correction coefficient. The calculations for this normalization can be found in Raes et al. (2022). More precisely,
CBi at day i equals

CBi = CBi− 1 +WP∗ ⋅
Tri
ET0i

(1)

Daily CB is thus diagnosed from the daily Tr, which is itself determined by CC, the reference evapotranspiration
ETo, and affected by stress factors related to water and temperature. Examples of water stresses in the generic crop
are stomatal closure which occurs when 50% of the total water between θFC and θWP has been depleted, or canopy
expansion that becomes limited when the water availability falls below 70%. The magnitude of the stress becomes
larger as time progresses and the effects depend on the growth stage of the canopy. By normalizing the tran-
spiration for climate (i.e., dividing transpiration by ETo) the WP factor, a crop parameter, only differs signifi-
cantly between C3 and C4 crops.

Crop yield is finally estimated by multiplying the CB with a crop specific harvest index, which is not considered
in this study. More details about the model equations can be found in the documentation of AquaCrop (Raes
et al., 2022) or in Raes et al. (2006, 2009) and Steduto et al. (2009).

2.1.3. AquaCrop Integration Into LIS

In this study, the compiled modules of AquaCrop were integrated into NASA's LIS version 7.4 (Kumar
et al., 2008) and ran at ∼1‐km (30 arcs) resolution, using an efficient parallelization scheme. LIS is a software
framework to facilitate efficient integration of advanced modeling techniques with satellite and ground‐based
observational data. It encapsulates multiple physical models (LSMs) and allows for utilization of multiple
assimilation, optimization and uncertainty estimation algorithms (Kumar et al., 2006, 2008; Peters‐Lidard
et al., 2007). LIS is written in Fortran90, as it is developed to run efficiently on high performing computing
systems. For efficiency reasons, the entire official AquaCrop code was also translated from its original Pascal
language into Fortran90 and officially released by FAO as part of version 7 (and higher) of AquaCrop (https://
www.fao.org/aquacrop/en/). The Fortran90 language of the official AquaCrop sets it apart from unofficial copies
in computationally less efficient high‐level programming languages like for example, Python. Within LIS, the
model can be run in deterministic or ensemble mode, for a range of forcing data sets and spatially distributed
satellite DA. In ensemble mode, the ensemble spread (std) is given as output along with the ensemble mean as a
measure of uncertainty.

For the experimental setup, the simulation and evaluation period was set from 2015 through 2021, preceded by a
2‐year spin‐up and the AquaCrop model was run with 24 ensemble members. Meteorological variables (pre-
cipitation, 2‐m temperature, ETo) were taken or derived from theModern‐Era Retrospective analysis for Research
and Applications, Version 2 (MERRA‐2; Gelaro et al., 2017), which was bi‐linearly interpolated to the spatial
grid of the model simulations (from 0.5ox 0.625o to 30 arcs). Terrain corrections were based on the digital
elevation model from the Shuttle Radar Topography Mission (Farr et al., 2007; Farr & Kobrick, 2000). The
MERRA‐2 precipitation (P) and temperature (T) were converted to the input units required by AquaCrop, that is,
mm day− 1 and °C. ETo (mm day− 1) is not a variable directly available from MERRA‐2, but was derived with the
Penman‐Monteith equation, using radiation, mean 2‐m temperature, 2‐m dew temperature, and 2‐m wind speed
(Allen et al., 1998).

One homogeneous soil horizon was considered with a depth of 1.2 m, and soil textural properties (θFC; θWP; θsat)
were used from a simple soil texture classification of 16 classes embedded within the LIS framework, derived
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from the global hybrid STATSGO/FAO soil map (Miller & White, 1998; Reynolds et al., 2000). To limit the
runoff potential and subsequent loss of water within the 1 × 1 km2 pixel, the curve number was set to a very low
value of 6, assuming that water lost in one crop field ends up in another field within the pixel considering the mild
topography of the study areas.

For the matching between soil moisture simulations and observations, a SSM (SSMac; m3m− 3) at each day i was
derived for AquaCrop by aggregating the first three soil moisture compartments (Figure 2) using:

SSMac,i = 0.75 ⋅ θ1i + 0.15 ⋅ θ2i + 0.1 ⋅ θ3i. (2)

The weighted averaging was done to reduce the strong threshold effects of θFC and θWP for individual
AquaCrop soil compartments as described in de Roos et al. (2021), and to help the DA setup (see below). The
strong threshold effects result from the conceptual water balance algorithm of AquaCrop and are not found for
SSM estimates of LSMs that use a physically‐based water balance, that is, Richards equation (not shown). It
should be noted that in AquaCrop, the soil moisture over the entire root zone is used to determine the water
availability to the crop, hence the aggregated soil moisture from all compartments. The individual compart-
ments were designed to estimate drainage within the root zone and are more of a simplification compared to a
physically‐based approach.

2.2. Observation and Reference Products

2.2.1. Sentinel‐1

The S1 mission from the European Space Agency and Copernicus measures radar backscatter in C‐band
(5.4 GHz) (Torres et al., 2012). The mission consists of two satellites; Sentinel‐1A (S1‐A) and Sentinel‐1B
(S1‐B), with a temporal coverage over Europe of about 2–3 days. The standard acquisition mode over land
(outside polar regions) is the Interferometric Wide Swath mode, which provides co‐polarized (vertical‐vertical;
VV) and cross‐polarized (vertical‐horizontal; VH) backscatter at 5 m by 20 m ground range resolution, from
October 2014 onward. The data were processed to the daily timescale, providing observations every ∼3 days and
they were assimilated year‐round excluding frozen soil conditions (with masking based on temperatures below
1oC). The processing of the data was done as in Lievens et al. (2019), Modanesi et al. (2021) and de Roos
et al. (2023), using ESA's Sentinel Application Platform (SNAP) software. The processing steps consisted of
precise orbit file application, border and thermal noise removal, radiometric calibration to backscatter as beta‐
naught, terrain flattening to backscatter as gamma‐naught ( γ0) , and range Doppler terrain correction. Urban
and water areas with coverage fraction larger than 0.1 (10%) were masked out based on PROBA‐V land cover
data, after which the data was regridded to match the spatial resolution of the simulated grid at 30 arcs. An orbit‐
bias correction was applied according to Lievens et al. (2019), in which the mean γ0 of each orbit was rescaled
using the static (long‐term averaged) bias of the 175 relative orbits.

2.2.2. In Situ ISMN Stations

Three station networks within the ISMN were considered for SSM evaluation: TERENO, SMOSMANIA and
REMEDHUS. Even though the AquaCrop soil moisture compartments from 0 to 30 cm were aggregated to
SSMac, only ISMN SSM (SSMismn) observation points with soil depths up to 10 cm were selected, as the ag-
gregation was done to partially correct for the relatively large variations in simulated soil moisture in the top
compartment, and the simulated top compartment of 10 cm still contributes most (75%) to the total considered soil
depth. Only measurements that were flagged as good quality were included. Additionally, each soil moisture
station was checked manually and suspicious measurements (e.g., very noisy or a soil moisture content reaching
0.0 m3m− 3) were removed. The data were aggregated to daily data by taking the latest measurement of the day
(usually at 23:00 hr). This was done as AquaCrop runs in daily time steps, and the calculated soil moisture
represents the value at the end of the day. The observational soil moisture data can contain large time gaps
(months to years), hence a minimum threshold was set of 1,100 daily measurements, to ensure data for at least 3
years, covering sufficient seasonal variation. The considered evaluation period between the years 2015 and 2021
is thus not consistent between the locations.
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2.2.3. SMAP Surface Soil Moisture

For a spatially complete evaluation, the 1‐km downscaled Soil Moisture Active Passive (SMAP) Level 2 product
of B. Fang et al. (2022) was used. The 1 km variation in this product is based on an inverse relationship between
land surface temperature (derived from Aqua MODIS) and soil moisture.

Data for descending (06:00 hr) and ascending (18:00 hr local time) overpasses are provided separately, but for this
study only ascending data were considered, as these were derived from observation at the latest time of the day,
and assumed more compatible with AquaCrop daily soil moisture simulations. The data are available from 1 April
2015 onwards and were regridded to match the spatial resolution of the simulated soil moisture, using the nearest
neighbor method. As opposed to in situ measurements that can contain large time gaps, SSM retrievals from the
SMAP satellite (SSMsmap) have a more complete temporal coverage over the evaluation period, with data about
every 3–6 days. Therefore, a lower minimum of 800 data points per pixel was set for evaluation with SSMsmap

data.

2.2.4. SMAP Vegetation Optical Depth

The vegetation optical depth (VOD) product from Konings et al. (2017) was used to evaluate the CB simulations.
These data are derived from the SMAP Level 1C brightness temperature observations with the Multi‐Temporal
Dual Channel Algorithm (MT‐DCA) by Feldman et al. (2021). Because the AquaCrop CB output concerns dry
and not wet biomass, the VOD was compared against an adjusted cumulative biomass index Bw that includes a
correction to wet biomass and a vegetation decline to simulate gradual harvest (harvest factor; HF) as described in
de Roos et al. (2023), with the following equation:

Bwi =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CBi ⋅ HFi

√
(3)

HFi is the ratio, whereby the minimum temperatures are smoothed using a 40‐day averaging window, dividing the
minimum smoothed temperature on day i, over a reference minimum temperature window centered around July 1.
HF therefore assumes that harvest is linked to declining temperatures. In some regions, harvest is more closely
related to water deficiency instead of temperature decline, which is also accounted for by keeping track of the
water availability during the growing season, as described in detail in de Roos et al. (2023). Note that in this study
the focus is mainly on the first part of the growing season, in which the biomass productivity increases until the
maximum is reached, as is described in Section 2.5. The 30‐arcs AquaCrop simulations were aggregated to match
the VOD 9‐km EASE grid, by averaging all simulations within each separate 9‐km EASE grid cell. Only data
were considered when the pixel contained at least 60% agricultural land and only the months May‐September
were considered to exclude vegetation impacts from crops outside of the summer growing season.

2.2.5. CGLS Dry Matter Productivity

The dry matter productivity (DMPcgls; kg ha− 1 d− 1) from the Copernicus Global Land Service (Wolfs et al., 2022)
was used to evaluate daily DMPac, which is defined as ΔCB= CBi ‐ CBi− 1 (see Equation 1). The DMPcgls product
is based on the fraction of absorbed photosynthetically active radiation (fAPAR) by vegetation, which was
derived from a sequence of optical satellites; PROBA‐V from January 2014 through June 2020, followed by
Sentinel‐3/OLCI sensor data, from July 2020 onward (Fuster et al., 2020). The data were used for the evaluation
years 2015–2021. Apart from fAPAR, the product makes use of radiation, temperature, and CO2 from the
ECMWF Reanalysis ‐interim (ERA‐interim) atmospheric reanalysis data set. The meteorological variables were
derived from ECMWF with a 0.25ox0.25o spatial resolution (Wolfs et al., 2022). The DMPcgls product provides
data three times a month, in which each value is representative of the past dekad (10 days). It should be noted that
the product does not make direct use of soil water information and therefore does not capture the effect of short‐
term water stress on vegetation productivity, but only indirectly includes drought stress through the fAPAR
retrieval (Wolfs et al., 2022). The normalized temperature effect is a fraction (0–1) used to multiply with fAPAR,
in which the boundaries are based on generalized C3 vegetation, which has a lower temperature optimum
compared to C4 crops (Wolfs et al., 2022). The product is therefore more suitable to be compared against C3
vegetation.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231
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The product is available approximately every 10 days at a 300 m spatial resolution and was resampled using bi‐
linear interpolation to match the spatial grid and resolution of the model simulations at 30 arcs. The DMP is a
productivity rate product, considering the absolute productivity per day. To derive productivity rates from the
AquaCrop CB, the daily differences were calculated and the mean of DMPac production was taken for each dekad
to match the temporal resolution of the DMPcgls product.

2.3. Data Assimilation

The model‐only AquaCrop simulations of soil moisture and CB are expected to contain errors, due to coarse
meteorological input and generalized crop and soil information. The DA system was set up to sequentially
assimilate backscatter γ0 observations from S1 and to update the diagnostic CB and prognostic model variables
θ1, θ2, and θ3, which together compose SSMac (Equation 2). The DA algorithm asks that both the observations and
forecasts are unbiased. Therefore, the link between the model variables and γ0 forecasts for both polarizations is
made with a calibrated forward operator.

2.3.1. Forward Operator

The mapping of AquaCrop model variables SSMac and CB to the γ0 space was done with the Water Cloud Model
(WCM), described by Attema and Ulaby (1978). The WCM considers the total backscatter with a soil and
vegetation backscatter component, in which the vegetation is represented as a water cloud assuming identical
water droplets that are randomly distributed. It therefore requires both soil moisture and fresh vegetation as model
input variables, which for this study are the SSMac and Bw. The calibration of the WCM parameters can be found
in Appendix A. For a more detailed motivation of theWCM setup and evaluation for the different areas, the reader
is referred to de Roos et al. (2023).

2.3.2. Assimilation Algorithm

The 1‐dimensional stochastic ensemble Kalman Filter (EnKF; Evensen, 2003) was used to sequentially update
either only the prognostic AquaCrop SSM compartment variables θ1, θ2, and θ3 composing SSMac (Equation 2),
or also AquaCrop cumulative biomass, CB. Note that the CB is diagnosed output (see Section 2.1), and not a
prognostic state variable in AquaCrop, but it is included in the update vector (called control vector below). In the
EnKF, a small number of ensemble trajectories are generated based on perturbed instances of the meteorological
input and selected control variables. These perturbations should capture the forecast errors in terms of input,
structure and parameters. The EnKF can be described as follows:

x̂+i,j = x̂−i,j + Ki [yi,j − ŷ−i,j] with ŷ−i,j = hi (x̂−i,j) (4)

where i indicates the time step, j the ensemble member, x̂+i,j the ensemble control vector in the model space after
the DA update, x̂−i,j, the ensemble control vector in the model space before assimilation, ŷ−i,j the ensemble
observation predictions in the backscatter space obtained with the forward operator, hi(.), and yi,j the observations
(γ0VV , or γ0VV and γ0VH , see Section 2.4), which are also perturbed based on the given standard deviation (SD) of the
observation error. The forward operator consists of three steps; (a) the top three soil compartments of AquaCrop
are combined to obtain SSMac, (b) AquaCrop dry CB is converted to Bw (as described above, and in de Roos
et al., 2023), to better represent the vegetation as observed by the satellite, that is, wet biomass that includes
vegetation decline, and (c) both Bw and SSMac are used in the WCM to simulate γ0.

The EnKF considers the uncertainty of both the forecasts (represented by the ensemble) and the observations,
which include instrument errors and representativeness errors, to assign a weight (Kalman gain; K) to the updates.
More specifically, Ki is calculated as follows:

Ki = COV(x̂−i , ŷ−i )[COV( ŷ−i , ŷ−i ) + Ri]
− 1

(5)

Where COV(x̂−i , ŷ−i ) is the error cross‐covariance of the forecast in model space ( x̂
−
i ) and backscatter space ( ŷ

−
i ) ,

COV( ŷ−i , ŷ−i ) is the forecast error covariance in backscatter space, and Ri is the observation error covariance.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231
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COV(x̂−i , ŷ−i ) governs the mapping from backscatter space to the control variables (three soil water compartments

and CB, depending on the experiment). The sizes of the control and observation vectors, and the associated error
matrices depend on the DA experiment, and are discussed below.

The model variables were sequentially updated with S1 observations at the points in space and time at which these
were available. Not every location was therefore updated with the same frequency of S1 observations. No bias
correction was applied between the observed and simulated backscatter, because the WCM calibration pre-
sumably removed the long‐term bias.

2.4. Experiments

Two DA experiments were run over the three study areas. The experiments use the same ensemble perturbations
to meteorological forcings, CB, and θ1, θ2, and θ3. In the first experiment, only the prognostic θ1, θ2, and θ3 are
updated, whereas in the second experiment also CB is updated with backscatter. The DA system setup of the two
experiments is schematized in the flowchart of Figure 3. CB is a diagnostic variable with temporal memory
(cumulative) and updates in CBwill thus not directly feed back into the AquaCrop model, but CB updates alter the
input to the WCM and thereby the mapping of γ0VV to soil moisture increments.

Experiment 1 (DA1) ‐ Only γ0VV observations were assimilated to update θ1, θ2, and θ3 composing SSMac

(Equation 2). The three θ compartments as well as the CB were perturbed, as shown in Table 1. The forecast error
perturbation for the CB was assumed to be uncorrelated to that of θ in the 3 compartments. Since the CB is not
updated, changes in CB come solely from updated SSMac. The perturbations to the three compartments of the
SSMac are cross‐correlated, with a factor of 0.6 for directly adjacent compartments and a factor of 0.4 between the
first and third compartment. Using a weighted average (θ1,2,3) can allow for a larger ensemble spread in the

Figure 3. Schematic overview of the study set‐up, showing the iterative process of the data assimilation in the Land Information System framework (blue lined box).
Green text refers to vegetation variable updating and blue to soil moisture updating. The conversion of AquaCrop CB to Bw before entering the forward operator of the
Water Cloud Model (WCM) is indicated by the dashed arrow. The blue SSMac is the weighted mean of the three AquaCrop soil water content compartments and is updated
for both experiments (DA1, DA2). Negative signs (− ) indicate the variable before DA and positive signs (+) refer to updated variables. The Sentinel‐1 (S1) backscatter is
used for the calibration of the WCM parameters and during the DA algorithm, using the ensemble kalman filter (EnKF). As illustrated with the two time series, the EnKF
computes differences between S1 and simulated backscatter in observation space, and maps these differences to updates in SSM and CB in state space.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231
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SSMac as the threshold at θFC in the top compartment in AquaCrop is easily
reached, after which the excess water is transported to the lower compart-
ments. The combination of the soil compartments consequently introduces
deeper soil moisture updates, weighted by their respective uncertainty and
their fractional contribution to SSMac. In short, the dimensions of x̂− ,+i ,
COV(x̂−i , ŷ−i ), yi and Ri are (3 × 1), (3 × 1), (1 × 1) and (1 × 1), respectively.

Experiment 2 (DA2) ‐ Similar to Experiment 1 for updatingSSMac, but with
the additional assimilation of γ0VH to update CB. The choice was made to
update the diagnostic CB and not the prognostic CC for two reasons, (a) S1
backscatter is an indication of total canopy volume, which is more closely
related to biomass than fractional vegetation cover and (b) the CC saturates
much earlier compared to other phenological indices such as LAI, where CC
reaches its maximum in an early crop stage and does not show much variation
until senescence has set in, which becomes difficult for updating in the DA

system. The ensemble perturbations of θ1, θ2, and θ3, and CB were not changed compared to Experiment 1. The
observation error correlations between γ0VV and γ0VH were ignored, and the update described by Equation 4 can
therefore effectively be split into two sequential update equations. One is the same as in Experiment 1 to update
θ1, θ2, and θ3 composing SSMac, and the second one only has dry CB in x̂− ,+i , and γ0VH in yi, so that the error
covariance matrices for the second update reduce to scalars. Apart from providing updated dry CB output, this
experiment also provides updated Bw estimates to the WCM as the forward model, which should ideally improve
the backscatter simulations of both γ0VV and γ0VH .

Note that γ0VV and γ0VH are observed by S1 at the same time and frequency, therefore the number of updates in time
is the same per location for both experiments. The differences between observed and simulated γ0VV or γ0VH will be
referred to as innovations ( [yi,j − ŷ−i,j]), whereas the updates to θ1,2,3 or CB will be referred to as in-
crements (Ki [yi,j − ŷ−i,j]) .

The DA experiments (DA1, DA2) are supplemented with one corresponding open loop (OL) run, in which the
model is executed in ensemble mode without assimilation. For all simulations (OL, DA), 24 ensembles were
generated with the perturbation standard deviations (SD) listed in Table 1. The perturbations for the model
meteorology are generated using a standard normal (additive) error distribution for T and ETo, and a log‐normal
(multiplicative) error distribution for P with a mean of 1 (− ). This means that for P, zero values are not perturbed
and no negative values are allowed. For T and P, common error SDs used in LSMs are 1°C and 0.5 (− )
respectively (Kumar et al., 2006; Peters‐Lidard et al., 2011; Reichle et al., 2010). ETo is not an input variable for
LSMs, because these LSMs compute ET themselves based on various meteorological variables. Therefore, no
reference SD values for the ETo are directly available in literature. The perturbation SD for ETo, θ1,2,3 and CB
were manually determined based on innovation statistics. Since perturbing the model variables can introduce
additional bias caused by strict boundaries of the variables (e.g., θFC, θWP), a perturbation bias correction (Ryu
et al., 2009) was applied to the model variables (θ1,2,3, CB).

The observation error for γ0VH (0.9 dB) was set higher than for γ0VV (0.7 dB), because in de Roos et al. (2023) higher
root mean square differences (RMSD) values between observed and simulated γ0VH were found. The observation
error contains both the instrument error and the representativeness error caused by the imperfect WCM. The
results of de Roos et al. (2023) showed that the RMSD between the observed and simulated backscatter is quite
variable over the areas, and although it is expected that optimizing the observation perturbation per location
would give better results, the setup is intended for large‐scale applications over Europe. The SD of the pertur-
bations is therefore kept general for all polarizations and experiments.

2.5. Evaluation of DA Impact on Soil Moisture and Biomass

Table 2 summarizes the AquaCrop variables that are evaluated for each of the DA experiments; one related to the
soil moisture (SSMac) and three related to the biomass (CB, DMP, Bw). The evaluation products for the model
variables are also summarized in the flowchart of Figure 3.

Table 1
Meteorological (P, T, ETo), Model (θ, CB) and Observation ( γ0)
Perturbation Parameters, Indicated by the Standard Deviation (SD) of the
Perturbation

Variable Perturbation type SD

precipitation (mm day− 1) multiplicative 0.5

temperature (°C) additive 1.0

ETo (mm day− 1) additive 0.7

θ1, θ2, θ3 (m3m− 3) additive 0.006

CB (ton ha− 1) additive 0.01

γ0VV (dB) additive 0.7

γ0VH (dB) additive 0.9
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In the first part of the evaluation (Section 3), the impact of the DA is assessed for both experiments by comparing
the DA time series to the model‐only (OL) simulations. The SSMac estimates were compared to in situ (SSMismn)
and SMAP (SSMsmap) data in terms of Pearson's correlation (R), anomaly R (i.e., after having subtracted the 7‐
year based climatology from the original time series) and unbiased root mean square difference (ubRMSD). The
anomaly R was used to evaluate both the short‐term and inter‐annual variation of SSMac. The SSMac is evaluated
year‐round between 2015 and 2021.

The AquaCrop biomass was evaluated in terms of DMPac against the DMPcgls product, and in terms of Bw against
the VODsmap product. The evaluation of DMP was done only from January until the peak in vegetation pro-
ductivity. The vegetation peak was selected as the end of the evaluation period since Khabbazan et al. (2022)
showed that the backscatter signal and vegetation Bw correlate quite well until full biomass is reached, indicating
the end of the vegetative stage. The peak was defined as the maximum value of the CGLS product, to make the
evaluation independent of the experiments. The comparison with Bw and the VOD time series was done for the
growing period between the months May‐September, to exclude the effect of other growing seasons. The peak
was not selected in this case as the VOD data can be very noisy.

For the evaluation of the DMP, the long‐term anomaly correlation was used as evaluation metric, which is
calculated by removing the short‐term anomaly (window size of 35 days) from the total anomaly. The focus is put
here on long‐term anomaly correlations because the EnKF algorithm can introduce a spiky pattern in the short‐
term estimates, which is realistic for SSMac but not for CB. Furthermore, as mentioned in Section 2.2.5, the
DMPcgls product is known to not represent short‐term water stress well. The Bw time series are visually compared
to the VOD for some points in terms of slope (i.e., increase in vegetation).

2.6. Evaluation of DA Setup With DA Diagnostics

In the second part of the evaluation (Section 4), the DA setup is evaluated in terms of DA diagnostics (Reichle
et al., 2010). More specifically, the time series SD of the normalized innovations Ninnov is used to assess whether
the uncertainties in the DA system are well captured. The Ninnov,i at time steps i is:

Ninnov,i =
yi − ŷ−i̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

VAR( yi) + VAR( ŷ−i )
√ (6)

Where yi − ŷ−i is the ensemble mean observation minus forecast residual (backscatter innovation), VAR( yi) and
VAR( ŷ−i ) are the error variances of the observed backscatter and modeled backscatter, respectively. In an optimal
DA system, the SD of the normalized innovations is 1, indicating that the time series differences are accounted for
in the assumed ensemble uncertainty, whereas values above 1 indicate that not all the uncertainty is captured, and
values below 1 show an overestimation of the uncertainty (De Lannoy & Reichle, 2016). Related to this, an
analysis of the forecast uncertainties will explain where and when most DA impact can be expected.

Furthermore, the soil moisture and vegetation updates were related to modeled soil and vegetation properties. The
CB increments were studied in relationship to the WCM vegetation parameters and the amount of CB. More
specifically, the correlation between the γ0VH innovations and the CB increments (R[INCR,INNOV]) for different
growth stages (levels of CB) were computed for different parts of the growing season. The growing season was
divided into an early season (January‐March; JFM) during which the CB is still relatively small and the modeled

Table 2
AquaCrop Variable Definitions for Evaluation

AquaCrop variable Definition Mathematical definition

SSMac,i (m3m− 3) Surface soil moisture 0.75 ⋅ θ1,i + 0.15 ⋅ θ2,i + 0.1 ⋅ θ3,i
CBi (t ha− 1) Cumulative dry biomass CBi− 1 +WP∗ ⋅ Tri

ET0 i

DMPac,i (t ha− 1 day− 1) Daily dry matter productivity CBi − CBi− 1

Bw,i (− ) Cumulative wet biomass index
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CBi ⋅ HFi

√
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γ0VH is expected to be dominated by SSMac, and the late season (March–July; MJJ), during which the CB (almost)
reaches its maximum, hence the contribution of vegetation to the total γ0VH signal is increased.

3. Results
3.1. Impact Analysis

Figures 4 and 5 give a first impression of the DA effect on AquaCrop SSMac and CB simulations for the two
experiments, spatially (Figure 4) and temporally (Figure 5) for area 3. Time series for locations in the other two
areas can be found in Appendix B. The temporal RMSD maps in Figure 4 between the DA (DA1, DA2) and OL
runs visualize the main differences between the two experiments. Whereas the impact on the SSMac is almost
equal, the changes in CB are stronger in Experiment 2. For both experiments, the areas with a clay soil texture
stand out in the maps, with larger impacts on CB and SSMac compared to other soil textures.

The SSMac time series in Figure 5 for Experiment 1 and 2 show no significant differences, as both were updated
with γ0VV using the same setup (WCM parameters, perturbations). The DA impact on SSMac is visible at the start
or end of the growing season, but becomes negligible when the soil moisture contents are close to or at θWP in
summer, or close to θFC in winter (Figure 5), due to the boundary restrictions. For Experiment 1, updates of the
SSMac show an effect on the CB for most years, most significantly for the years 2015, 2017, and 2020. The effect
of the SSMac updates on the vegetation is strongly dependent on their timing and magnitude. For the year 2017 for
example, in Figure 5, DA1 causes a slight decrease in SSMac early in the season, resulting in a lower CB. For
2021, DA1 also results in lower SSMac, but without affecting the CB. This indicates that there is still sufficient
water available in the root zone for the early growth stage of the vegetation and no water stress is initiated.

Figure 4. Root mean square differences between DA and OL runs, visualizing the impact of the DA for CB (January–July) and SSMac (all year) in (left) Experiment 1
and (right) Experiment 2, for area 3. Red dot indicates the location of Figure 5.
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The DMP plots for both experiments in area 3 (Figure 5) show an AquaCrop overestimation in both DA and OL
relative to the DMPcgls. For area 1 (Appendix 1, Figure B1), there is only a slight overestimation for some years,
whereas for area 2 (Appendix B, Figure B2), theac is generally lower than observed. Comparing the time series of
the three study areas, the changes in CB due to DA1 have the most significant effect on study area 2. Out of the
three study areas, area 1 shows the lowest impact on the CB resulting from SSMac updates (Appendix B,
Figure B1) and the SSMac spread is also smaller compared to areas 2 and 3. The main difference between area 1
and the other two areas is that it is situated in a temperate climate region and is therefore less dependent on water
availability compared to the other areas, which are situated in a Mediterranean climate region. Additionally, the
soil texture plays a significant role in the size of the ensemble spread, which will further be elaborated in Sec-
tion 4.2. A large ensemble spread results in strong SSMac updates and subsequent changes in CB and DMPac
(Appendix B, Figure B2).

In Experiment 2, the CB was explicitly updated using γ0VH observations, and the stronger effect on the CB in the
DA2 run can be seen in the maps (Figure 4) as well as the time series (Figure 5). The ensemble spread in CB
becomes significantly smaller than the OL after DA updates, for almost all years (Figure 5). Furthermore, the DA
results in different CB curves for the years 2018–2021, where the corrected CB is no longer monotonically
increasing within a season, but also shows declines from the corrections to the Bw that is used to describe the
vegetation in the WCM as observed by the satellite.

Figure 5. Time series of SSMac, CB and DMP (OL and DA) for Experiment 1 (top) and Experiment 2 (bottom), at point
41.39°N and 5.32°W, situated in area 3. Daily simulations of SSMac and CB are shown as lines, and, if it concerns a directly
updated variable, the spread of the model ensembles is shown as the 95% confidence interval. The DMP plots show less data
points because they are matched to the 10‐daily time steps of the CGLS evaluation product.
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3.2. Soil Moisture Evaluation

The effect of S1 DA on SSMac for the two experiments was evaluated for several points with in situ SSMismn, and
over the study area with the SMAP 1‐km soil moisture product. Note that the results of Experiment 1 and 2 for
SSMac are minimal.

Figure 6 shows the changes in R, anomaly R and ubRMSD between the DA1 (similar for DA2) and OL simu-
lations at the in situ points for the three areas and both experiments. Overall, the DA shows a small improvement
for most in situ points in terms of R regardless of the OL performance. The performance in anomaly R is overall
lower for the OL runs compared to R. DA slightly deteriorates the anomaly R for some points in area 2 and 3. The
ubRMSD shows no significant improvement through DA.

The results of the performance evaluation against SSMsmap are presented in the maps of Figure 7 and the boxplots
in Figure 8. The difference maps in Figure 7 further include the results of the corresponding metrics with SSMismn
points. Maps for the other two areas can be found in Appendix C. The areas with a dominant soil type of clay stand
out in all the maps, with overall lower correlations but larger positive impacts from the DA. Because of the strong
effect of these areas, they were excluded from the boxplot analyses in Figure 8. From the OL maps, it can be seen
that the R values are highest in areas without clay soils, around 0.8. The anomaly R values are lower, but still
significant (∼0.6). After the DA, R and anomaly R increase strongly over clay soils, but the effect on the other
regions is variable. The ubRMSD is also very dependent on the soil texture, where the highest values are found for
clay soils and the lowest values for sandy soils. The difference maps indicate a level of consistency between the
SSMismn and SSMsmap. From the boxplots, it can be derived that the R and anomaly R values are highest for area 3,
and most variable for area 2, the largest of the three areas. Area 2 shows the lowest overall performance with the
SSMsmap out of the three areas, but R and anomaly R remain above 0.5. However, the impact of the DA is most
notable for areas 1 and 2, with very slight improvements for R, anomaly R and ubRMSD. Due to the variable
performance of the DA in area 3 (Figure 7), overall no significant changes are found in Figure 8.

3.3. Biomass Evaluation

The OL and DADMPac was evaluated against the CGLS product in terms of long‐term anomaly R, for January up
to the DMPcgls peak, which mostly occurred mid‐June. The boxplots in Figure 9 present a comparison between the
OL and DA runs. Similarly to the evaluation of SSM, the clay regions are excluded from the boxplot analysis. The
simulations in these regions show high water stress in the spring and summer season, as a result of the low
infiltration capacity. Consequently, for some years, no CB is simulated, which is not in line with the DMPcgls
evaluation product. The change in skill introduced by DA1 is generally very small, and slightly more pronounced
for DA2. Area 1 shows reductions in the long‐term anomaly R for DA2, and area 2 shows a slight overall
improvement for DA2, whereas no impact can be seen for area 3.

Figure 10 shows time series of aggregated AquaCrop Bw for the OL and DA Experiment 2 compared to VODsmap

data at three locations in the three study areas. The increase in Bw nicely follows the increase in VOD for area 1
and some regions of area 2 well, but not for area 3. The temporal correlations between OL and VODsmap is over

Figure 6. Evaluation of SSMac with SSMismn for area 1 (2 sites), area 2 (5 sites), and area 3 (13 sites) over the years 2015–
2021. The OL metrics are presented on the x‐axis and the change introduced by DA1 on the y‐axis.
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0.7 for area 1, but strongly variable for area 2 and poor for area 3 (R<0). Overall, the DA1 and DA2 runs did not
improve the performance compared to the OL runs.

4. DA Diagnostics
4.1. System Optimality

In Figure 11 the standard deviation of the normalized backscatter innovations (SD(Ninnov) , Equation 6) of DA2
for the three study areas are presented for γ0VV and γ0VH . The values are close to one, but overall slightly higher,
indicating that the assumed observation and forecast errors are slightly underestimated. This can be partially
attributed to the forecast γ0 uncertainty which is limited by the WCM parameters. This will be explained in more
detail in the following Section 4.2. The following sections will explain how the combination of the WCM and
both the observation and forecast uncertainties determine the updates to soil moisture and vegetation introduced
by γ0.

Figure 7. (Left) Spatial maps of Pearson's R, anomaly R and unbiased root mean square difference between OL SSMac and SSMsmap for area 3, and (right) difference
maps for DA1 (DA1‐OL) for the samemetrics. The correlation differences at the individual International Soil Moisture Network points are shown in the difference maps
with triangles.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231

DE ROOS ET AL. 15 of 29

 21698961, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008231 by Shannon de R
oos - V

rije U
niversiteit B

russel U
niversity L

ibrary , W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.2. Relationship Between Soil Moisture (Parameters) and γ0

A larger γ0 forecast uncertainty leads to stronger updates in SSMac and CB, and the conversion from γ0 to soil
moisture updates is also largely determined by the WCM equations. The γ0 forecast uncertainty is influenced by
the soil moisture in two ways. First, the γ0 forecast uncertainty is determined by the ensemble uncertainty in

Figure 8. Evaluation of AquaCrop surface soil moisture for OL and DA1 (SSMac) with (SSMsmap) for area 1, area 2, and area 3 for Pearson's R, anomaly R and unbiased
root mean square difference. The clay pixels have been removed from the analysis.

Figure 9. Long‐term anomaly correlation of DMPac (rate) with DMPcgls for area 1, area 2 and area 3. For each area, the left
box evaluates the OL, whereas the two dark green boxes evaluate DA1 and DA2 for the months January until the peak of
DMP. The clay pixels have been removed from the analysis.
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SSMac, which is in turn determined by soil texture parameters (θFC and θWP) of the AquaCrop model. The time‐
averaged ensemble spread (standard deviation, SD) in SSMac is visualized on the right side of Figures 12d–12f,
revealing the strong differences between different soil textural classes within the areas. The spread is often the
largest for pixels with clay dominated soils, mostly in the second and third soil moisture compartments (not
shown): clay soils have a larger storage memory due to their low conductivity rate. By design, the state variables
with larger spreads attract larger increments, via the COV(x̂−i , ŷ−i ) term in the Kalman gain (Equation 5), explaining

why a strong DA impact on SSMac was found over clay pixels.

The second influence on the γ0 forecast spread relates to the transformation of the SSMac to γ0soil. This relationship
as defined by the WCM is described by Equations A1 and A2 and depends on the C and D parameters, which are
calibrated for each gridcell individually. Figures 12a–12c reveals a linear relationship between the calibrated
slope parameter D of the WCM and the temporally averaged ensemble SD of the forecasted γ0 from DA2. The
higher the value forD, the wider the possible range in γ0, that is, the larger VAR( ŷ−i ) in Equation 5, regardless of
the ensemble spread in SSMac or Bw introduced by perturbations. The slope of this linear relationship is dependent
on the soil texture and explains the DA impact on soil moisture shown in Figure 5. The upper magnitude of the
forecasted γ0 spread is determined by the strong double boundaries (θWP and θFC) of the conceptual water balance.
For example, silty soils have a larger range between θFC and θWP than other soil textures. In the conceptual
AquaCrop water balance, this can result in large fluctuations of the soil moisture in the top compartments, which
are much stronger than the fluctuations observed in the γ0 signal. The effect of SSMac is then compensated in the
WCM calibration by a small D value which subsequently results in a small modeled γ0 spread. This observation

Figure 10. Bw time series for the OL (gray) and DA2 (red) runs of Experiment 2 for each area (individual points), set against
the VOD retrievals for the months May–July, to compare the slopes caused by vegetation between the simulations and the
evaluation data.
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coincides with the results in de Roos et al., 2023, where the WCM sets a small value for D to counterbalance the
considerable AquaCrop soil moisture fluctuations in time.

The large scatter in SD γ0VV (Figures 12b and 12c) for pixels with clay dominated soils is likely due to un-
realistic AquaCrop model simulations of SSMac. The soils steadily dried out over the spring and summer
months due to low infiltration capacity, and the WCM optimization maximized the vegetation contribution and
minimized soil moisture contribution with low values for the slope parameter D. The low D values further
amplify the large DA effect on the SSMac in clay areas, that is, small changes in observed backscatter lead to
large changes in SSMac.

4.3. Relationship Between Vegetation (Parameters) and γ0

The conversion from γ0 to vegetation updates is largely determined by nonlinear and time‐varying relationships in
the WCM. The WCM contains two vegetation parameters, (a) parameter A related to the direct backscatter
contribution of vegetation to the total γ0 signal and (b) parameter (B) related to the attenuation by vegetation (T2)
of the soil contribution, which can be found in Equations A3 and A4. The parameter values vary per location as all
pixels were calibrated individually, and determine how the vegetation affects the γ0 simulations, or conversely,
how the γ0 DA updates vegetation. No clear relationship between A and the mapping of backscatter innovations to
CB increments is found.

The effect of parameter B on the correlation between γ0VH innovations and CB increments (R[INCR,INNOV]) is
visualized in Figure 13, for the early growing season (JFM) and the late growing season (MJJ). The R[INCR,INNOV]
indicates if large γ0VH innovations actually result in large updates in the DA2 system. At the start of the season,
R[INCR,INNOV] are dominantly negative and the relationship between R[INCR,INNOV] and B is negative. When the

Figure 11. SD(Ninnov) for three study areas, for (a) γ0VV and (b) γ0VH for DA2, computed for the entire evaluation period (2015–2021).
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vegetation grows, the R[INCR,INNOV] values are positive and the relationship with the R[INCR,INNOV] becomes
positive, as can be seen in the months May‐July (MJJ).

This is in line with the behavior of the WCM, described by Bechtold et al. (2023). Low vegetation and high soil
moisture (JFM) cause only a small contribution of direct vegetation scatter and only a minimal attenuation of the
soil signal, that is, the soil signal dominates. Consequently, the total backscatter is not tightly connected to
vegetation and a positive backscatter innovation is not translated into an increase in vegetation. For higher
WCM‐B parameters, the backscatter attenuation due to vegetation will be relatively stronger than the direct
vegetation scattering component (Appendix A, Equation A3), and consequently positive backscatter innovations
would be associated with reduced vegetation.

As the CB increases and SSMac decreases (MJJ), the contribution of direct vegetation increases and becomes
larger than the attenuated soil backscatter. A positive backscatter innovation can then be directly related to a
positive CB increment. Higher values for WCM parameter B further enlarge the positive relationship by reducing
even more the relative soil contribution and attributing most of the total backscatter signal to vegetation (and thus
leading to strongly positive R[INCR,INNOV]).

5. Discussion
This study presented a first assessment of regional S1 backscatter assimilation within the AquaCrop model in-
tegrated into NASA's LIS framework. The quality of the results is largely influenced by both the regional

Figure 12. Scatter plots on the left show the forecast backscatter ensemble SD (DA2 SD γ0VV ) and theWater CloudModel soil slopeD parameter for the three study areas
(a–c) for the entire SSM evaluation period, with colors indicating soil textures, and the right side shows the corresponding spatial maps of SSMac ensemble SD (d–f).
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AquaCrop model setup and the DA system setup, which will be discussed separately before discussing the DA
results for soil moisture and biomass.

5.1. Model Setup

The model setup consisted of several generalizations, most importantly related to homogeneous generic crop
parameters considered over all three regions, a simple spatially variable representation of the soil (single soil
horizon, no impermeable layers or groundwater table) and downscaled meteorological input data based on
0.5°x0.625° re‐analysis data. These generalizations inevitably led to local model errors, which became apparent
for example, over the regions with dominantly clay soils. Apart from the model, the evaluation data sets also
contain limitations. The satellite‐based reference data are retrievals, based on several assumptions and might
observe a quantity that deviates from what the model simulates. The in situ data are point‐based and differ in
spatial support from that of the simulations.

Despite these limitations and generalizations, overall good temporal correlations were found between the
evaluation products and model only (OL) runs, in terms of SSMac and DMP, for all study areas. The AquaCrop
model does not perform well over clay regions in area 2 and 3 because for some years, no vegetation growth
could be simulated due to water stress. In addition, the model often simulates overestimated DMPac compared
to the DMPcgls product, mostly in the regions with drier climates, and this is likely related to the parameters of

Figure 13. Scatter plots between the correlation of the γ0VH innovations with CB increments (R[INCR,INNOV]; − ) and Water Cloud Model parameter B (− ), for the first part
of the growing season; January–March (JFM) and for the later stage of the growing season, March–July (MJJ), for all years, Experiment 2. The pixels with clay soils are
removed from the analysis.
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the generic C3 crop. The evaluation with Bw gave mixed results for the different regions. Especially, for area 3,
the growth in Bw did not coincide with the VOD data, resulting in negative temporal correlations. It could be
that the seasonal cycle of the generic crop is not representative of the vegetation in the drier climates, but it
should also be noted that the VOD data of area 3 was much more noisy and incoherent compared to the other
areas.

5.2. Experimental DA Setup

The three top soil moisture compartments of AquaCrop were combined using a weighted average, to represent the
SSMac. The aggregation of the three top compartments facilitates a direct update of soil moisture in three layers,
which is beneficial to get updates when the top layer reaches upper or lower boundaries, but it can also be harmful.
Due to the free drainage at the bottom of the soil profile in the conceptual water balance of AquaCrop, the spread
in the deep layers can become unrealistically high and attract large updates. The weights of the weighted average
need further investigation, because they were now empirically set without any calibration to create realistic SSMac
time series compared to some independent soil moisture estimates (trial and error), but the optimal weights will
naturally differ with texture class, climatological region and with the soil moisture reference data (e.g., C‐band
and L‐band soil moisture retrievals relate to different surface layer depths).

Overall, the S1 DA introduced SSMac improvements, mainly for areas 1 and 2. In areas with claeyey soils, the
updates were strong and could either improve or deteriorate the results. The steady decrease in SSMac as a result
of low infiltration capacity for larger rainfall events in clay soils during the spring and summer resulted in a poor
performance of the WCM, in which the effect of the soil moisture on γ0 simulations for some regions was
minimized with low values for D. Low WCM‐B parameters, in turn, lead to large increments in soil moisture for
small γ0 innovations.

The success of inferring good increments from S1 γ0VV observations generally depends on the performance of the
observation operator, including the diagnosis of Bw and the calibrated parameters of the WCM. The generic crop
and the associated Bw were set up for crops in the summer growing season, which is not suitable for winter cereals
that are in fact commonly cultivated in the Ruhr area, that is, area 1 (Blickensdörfer et al., 2022). The marginal DA
impact on the CB in DA2 is further be related to the fact that only small increments are applied at the start of the
growing season (Section 4.3). To have a stronger DA impact on the vegetative phase of the crop development, it
could be beneficial to also include parameter updating to define the start of the growing season or emergence.

Additionally, the WCM parameters were assumed to remain constant in time, while in reality a certain fraction
of crop rotation is to be expected at a 1‐km spatial resolution, which would likely have reduced the accuracy of
the forward operator. Presenting the model variables in the WCM in the most optimal way is of crucial
importance. Alternatively, more detailed forward operators might give better results and additionally the use of
machine learning to derive optimal simulated σ0 has also shown potential (de Roos et al., 2023; Rains
et al., 2021).

The DA diagnostics further revealed that the DA system could still be optimized, possibly by calibrating the
observation perturbations per location and for each polarization. The observation error could be increased, as it
also includes the representativeness error of the WCM (van Leeuwen, 2015). However, as was concluded from de
Roos et al. (2023), most of the difference between the simulated and observed backscatter comes from the
AquaCrop model errors.

5.3. DA Impact on Soil Moisture and Biomass

The results of DA1 showed overall slight improvements in SSMac with minimal impact on CB. The small impact
on SSMac can be attributed to (a) the conceptual water balance of AquaCrop, with upper and lower thresholds of
wilting point and field capacity limiting updates in very dry or wet periods, and (b) the DA system setup using
satellite backscatter instead of retrievals. The assimilation of Sentinel‐1 soil moisture retrievals in crop models has
shown to be effective in other studies, especially when combined with optical‐based remote sensing data for
vegetation (Pan et al., 2019; Rojas‐Munoz et al., 2023). But the use of SAR observations for correcting crop
models is not as common and so far more reported for hydrological applications (Bechtold et al., 2023; Sun
et al., 2021). Furthermore, the AquaCrop CB has a particular sensitivity to soil moisture: crop water stress is
initiated when a fraction of the water availability between θFC and θWP of the root zone is exceeded.

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231

DE ROOS ET AL. 21 of 29

 21698961, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008231 by Shannon de R
oos - V

rije U
niversiteit B

russel U
niversity L

ibrary , W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Improvements in the temporal variation of SSMac due to DA do therefore not automatically result in improve-
ments in CB estimates, because this depends on the total available water content in the root zone, which is strongly
dependent on the soil texture.

The use of S1 γ0VH to update AquaCrop dry CB simulations (DA2) is particularly challenging because S1 ob-
servations are sensitive to the Bw. The updated CB in DA2 is no longer always monotonically increasing (mainly
not in warmer areas) and the (negative) changes in CB no longer reflect DMPcgls rates that can be compared to
satellite‐based DMPcgls estimates. S1 DA can introduce a decrease in CB, because biomass might indeed have
been removed from the pixel (e.g., harvest), and also because the DA corrects the (unobserved) CB for any errors
in the conversion to Bw as part of the observation operator.

The comparison of time series of Bw (instead of CB) and VODsmap showed potential, but while the agreement
between observed VOD and simulated Bw was sometimes high, there was no significant improvement in the inter‐
annual variation introduced by the DA. The changes in Bw after DA were often small, and the VOD product
showed to contain noise, making it difficult to draw conclusions from this evaluation.

This study set up a technical data assimilation framework with the aim to understand how Sentinel‐1 data can
be used to improve AquaCrop model simulations. The impact analysis showed the effect of DA, but the
performance analysis relative to independent data did not show a significant improvement in the results.
Unlike the more common assimilation of brightness temperatures from passive microwave satellites, or soil
moisture retrievals, the assimilation of Sentinel‐1 backscatter to update both soil moisture and vegetation in
crop models is still relatively unexplored, and needs further research. However, Sentinel‐1 offers the ad-
vantages of going to much higher resolutions, which offers potential for new insights in agricultural research.
As the integration of AquaCrop into the LIS framework is new, it is anticipated that continued research can
further improve the DA system by leveraging the findings of this study on how backscatter and variables in
crop models are related.

6. Conclusions
In this study, S1 backscatter data were assimilated into AquaCrop within the NASA LIS system. AquaCrop was
run over three areas in Europe, using coarse meteorological re‐analysis data, and inevitably uncertain crop and
soil parameters, which lead to forecast errors in soil moisture and biomass. Via DA, the aim was to reduce these
errors. In one DA experiment, only top soil moisture was updated using γ0VV . In a second experiment, both soil
moisture and cumulative CB were updated through a combined assimilation of S1 γ0VV for soil moisture updating
and γ0VH for CB updating.

The assimilation of γ0VV can improve the simulation of soil moisture in the top soil of AquaCrop. However,
problems arose over homogeneous clay soils, which are generally unsuitable soils for most crops, and led to
unrealistic modeled crop growth and unrealistic parameters in the observation operator that consequently
introduced undesirable soil moisture updates. Furthermore, in general, the strong effects of the soil moisture
boundaries of the conceptual water balance of AquaCrop (field capacity and wilting point) caused updates mainly
during the beginning and end of the growing season, but only very limited updates during very dry or wet
conditions in summer and winter.

Only updating the soil moisture in the first DA experiment did not translate into an improved performance of
biomass, based on a comparison the DMPac simulations against an independent satellite‐based DMPcgls. In
general, the impact on CB is limited since the CB simulations in AquaCrop are only affected by soil moisture
updates in case the water stress threshold is reached during the vegetative growth stage.

The second experiment showed a larger impact on CB, but the results varied spatially. First, linking AquaCrop
biomass to γ0VH includes two uncertain modeling steps: (a) the conversion from the AquaCrop CB into wet
biomass (Bw), and (b) the forward operator, the WCM, relying on relatively simplistic calculations. Additionally,
the WCM parameters were assumed to remain constant over time while in reality, cropping practices are variable
over time. The modeling deficiencies of the observation operator might result in a poor propagation of the γ0VH
innovations to CB increments. Second, a large‐scale evaluation of the inter‐annual variation in dry or wet biomass

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008231

DE ROOS ET AL. 22 of 29

 21698961, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008231 by Shannon de R
oos - V

rije U
niversiteit B

russel U
niversity L

ibrary , W
iley O

nline L
ibrary on [17/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



with satellite products is non‐trivial, because each product represents particular plant features that are not
necessarily modeled accordingly by AquaCrop.

It is now technically possible to support a large‐scale S1 DA system for the crop model AquaCrop. However, our
study indicates that improvements in the local and seasonal characterization of crop and soil parameters is needed
to better capture high‐resolution soil‐plant processes and backscatter interactions, and to eventually improve crop
growth through the assimilation of S1 data.

Appendix A: Water Cloud Model

TheWater CloudModel (WCM; Attema&Ulaby, 1978) considers the total γ0 signal as the sum of the backscatter
from the soil ( γ0soil) , attenuated by vegetation (T

2) and the backscatter coming from the water‐holding medium
above the soil, that is, vegetation over cropland ( γ0veg) . Similar to de Roos et al. (2023), this study excluded the
incidence angle dependency, because the latter was also removed from the S1 observations during the terrain
flattening processing step. However, this processing step does not remove potential effects of canopy roughness
and differences in travel length of the signal through vegetation, which ultimately will add to the observation
error. The equations of the WCM are given below, with Equations A1, A3, A4 written in linear scale and
Equation A2 defined in dB (10 log(.)), which is converted back to linear scale when used as input for Equation A1
(unit conversion not shown). The WCM requires the calibration of four parameters, which was done for each grid
cell. The parameters C (dB), related to surface roughness, and the slope parameterD (dB/m3 m− 3) are required for
γ0soil (Equation A3). The vegetation parameter A (− ) relates to vegetation scattering (γ0veg; Equation A3), and B (− )
to vegetation attenuation (Equation A4), affecting γ0soil. As explained in de Roos et al. (2023), the AquaCrop CB
was transformed to wet biomass Bw by considering canopy decline based on temperature and water stress as
discussed above (Section 2.2.4), and V1 = V2 = Bw.

The optimization was done using a Bayesian objective function that minimizes the sum of squared error between
the S1 observed γ0 and the simulated γ0, and also uses a prior parameter constraint. The Differential Evolution
Adaptive Metropolis (Laloy & Vrugt, 2012; Vrugt, 2016) was used as optimization algorithm. A more detailed
description of the WCM optimization can be found in de Roos et al. (2023).

γ0 = T2 ⋅ γ0soil + γ0veg (A1)

γ0soil = C + D ⋅ SSMac (A2)

γ0veg = A ⋅ V1 (1 − T2) (A3)

T2 = exp(− 2 ⋅B ⋅ V2) (A4)

The WCM calibration was executed for the months January up to the end of July, to capture the soil moisture
variations which are more pronounced in the early months (low vegetation cover), and the vegetative stage of the
crop later in the main growing season. The uncertain stage of the decline in Bw at the end of the season was hereby
largely excluded. The entire evaluation period (2015–2021) was used for calibration (as opposed to only the first 4
years in de Roos et al., 2023) to maximally include the effect of crop variations over time for a single location. The
four parameters were calibrated for each grid cell and both γ0VV and γ0VH separately, using the deterministic
AquaCrop model output of SSMac and Bw, as explained in de Roos et al. (2023).

Appendix B: Time Series for DA Experiments Within Area 1 and 2
Figures B1 and B2 show similar time series as Figure 4 to visualize the effect of DA for both experiments, but for
different single locations in study areas 1 and 2.
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Figure B1. Time series of SSMac, CB and daily biomass productivity (OL and DA) for Experiment 1 (top) and Experiment 2 (bottom), of point 50.9°N and 6.32°E,
situated in area 1. Daily simulations of SSMac and biomass are shown as lines, and, if it concerns an updated perturbed variable, the spread of the model ensembles is
shown as standard deviation with a 95% confidence interval. The productivity plots (DMP) show less frequent results because they are matched to the 10‐daily time steps of
the evaluation product.
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Appendix C: SMAP Soil Moisture Evaluation
Figure C1 shows SSM correlation difference maps for areas 1 (I) and 2 (II). It compares AquaCrop simulations
with SMAP downscaled retrievals and ISMN locations, similar to what is shown in Figure 7 for area 3.

Figure B2. Time series of SSMac, CB and daily biomass productivity (OL and DA) for Experiment 1 (top) and Experiment 2 (bottom), of point 43.44°N and 1.88°E,
situated in area 2 (clay‐textured soil). Daily simulations of SSMac and biomass are shown as lines, and, if it concerns an updated variable, the spread of the model
ensembles is shown as standard deviation with a 95% confidence interval. The productivity plots (DMP) are less because they are matched to the 10‐daily time steps of the
evaluation product.
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Data Availability Statement
The integration of the AquaCrop code into LIS has not yet been officially released, but the AquaCrop source code
can be found on the FAO website, https://www.fao.org/aquacrop/en/. The following repository includes the
generic crop file and management file; https://doi.org/10.1002/2014MS000330. The water cloud model (WCM)
calibration scripts can be found here: https://github.com/KUL‐RSDA/obs_operator_calibration. All data that
were used for model input and evaluation are freely available online. Please visit the following links for data
access. MERRA‐2 variables: https://disc.gsfc.nasa.gov/datasets?project=MERRA‐2(last access: 1 Jan 2022,
Global Modeling and Assimilation office, 2015a, https://doi.org/10.5067/VJAFPLI1CSIV, 2015b, https://doi.
org/10.5067/RKPHT8KC1Y1T); the soil mineral classification and organic matter fromHWSDv1.2: http://www.
fao.org/soils‐portal/data‐hub/soil‐maps‐and‐databases/harmonized‐world‐soil‐database‐v12/en/ (last access: 30
August 2019, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012); the CORINE land cover map: https://land.copernicus.eu/
pan‐european/corine‐land‐cover/clc‐2012?tab=mapview (last access: 5 September 2019, Copernicus Global

Figure C1. Difference maps (DA‐OL) between ensemble mean model simulations and soil moisture active passive for area 1
(I; left) and area 2 (II; right). The differences between SSMac and SSMismn for the same metrics are indicated as triangles.
Red/pink colors indicate a reduced performance due to DA, blue/green indicate an increased performance in the DA runs.
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Land Service, 2018); reference data set DMPcgls: https://land.copernicus.eu/global/products/dmp (last access: 1
June 2023, Copernicus Global Land Service, 2019a); ISMN soil moisture from various observatories: https://
ismn.geo.tuwien.ac.at/en/ (last access: 1 Jan 2023); the SMAP 1‐km soil moisture from the NASANational Snow
and Ice Data Center Distributed Active Archive Center (NSIDC DAAC): https://nsidc.org/data/nsidc‐0779/
versions/1 (last access: 1 July 2023); the VODsmap product, version 4: https://zenodo.org/records/5579549(last
accessed: September 2023).
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