
Conclusions: Hybrid models allow fast and accurate SWE predictions based only on 

meteorological data, enabling forecasts at unprecedented spatio-temporal scales.

Results: Hybrid models obtain better results than either ML or physically-based 

models, PPC performs best for temporal extrapolation and AUG for new locations.

The ML-based setups improve the performance of Crocus in the temporal split due to a better snow melt timing, but 

severly underestimate SWE in the spatial split except for the AUG setup, which obtains 12% lower RMSE than Crocus.

SHAP analysis: The feature importances of the ML models are 

consistent with physical knowledge; temperature and downwards 

radiation have a negative effect on ΔSWE and snowfall shows a 

positive linear relationship, despite some deviations at extreme 

values. Adding lagged variables improves model performance, but 

are only relevant for some features and up to a week before at most.
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Background: SWE is difficult to quantify due to its high spatiotemporal variability 

and limited number of available data, because of the difficulty in measuring it.

Goal: We want to improve long-term daily SWE simulations for stations or time 

periods where no snowpack measurements are available.

We compare two hybrid setups (PPC and AUG) with a measurement-based ML approach (MSB) and a physically-based 

model (Crocus) for stations with available historical SWE (station split) and without them (temporal split).

Dataset: The SWE and meteorological data consisted of 7 to 20 years of in-situ observations at ten stations throughout the 

northern hemisphere from ESM-SnowMIP, three of which had automatic daily measurements and the rest relied on intermittent 

manual observations. Crocus simulations ran on the meteorological data from the ten stations were used both in the hybrid 

models and for benchmarking purposes.
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