
European Geosciences **General Assembly** 2025, Vienna, Austria

Project financed by the French National Research Agency, Programme Investissement d'Avenir (ANR-17-MGPA-0006), and by INRAE Professor chair on Sustainable transition toward low fossil carbon economies

Advancing soil carbon sequestration solutions: A decision-support tool for achieving net-zero goals

Christhel Andrade Díaz^{a*}, Hiba Shreim^a, Lorie Hamelin^a

^a TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France *Corresponding author: (<u>andraded@insa-toulouse.fr</u>)

A/A

Sylvopastora

Co-benefits

Negative effects

Agroforestry

Crop rotations

Terraces Hedgerows

Durable climate & system resilience

Arrow = KPI influence | Color = KPI | Distance = Effect

Agrisilviculture

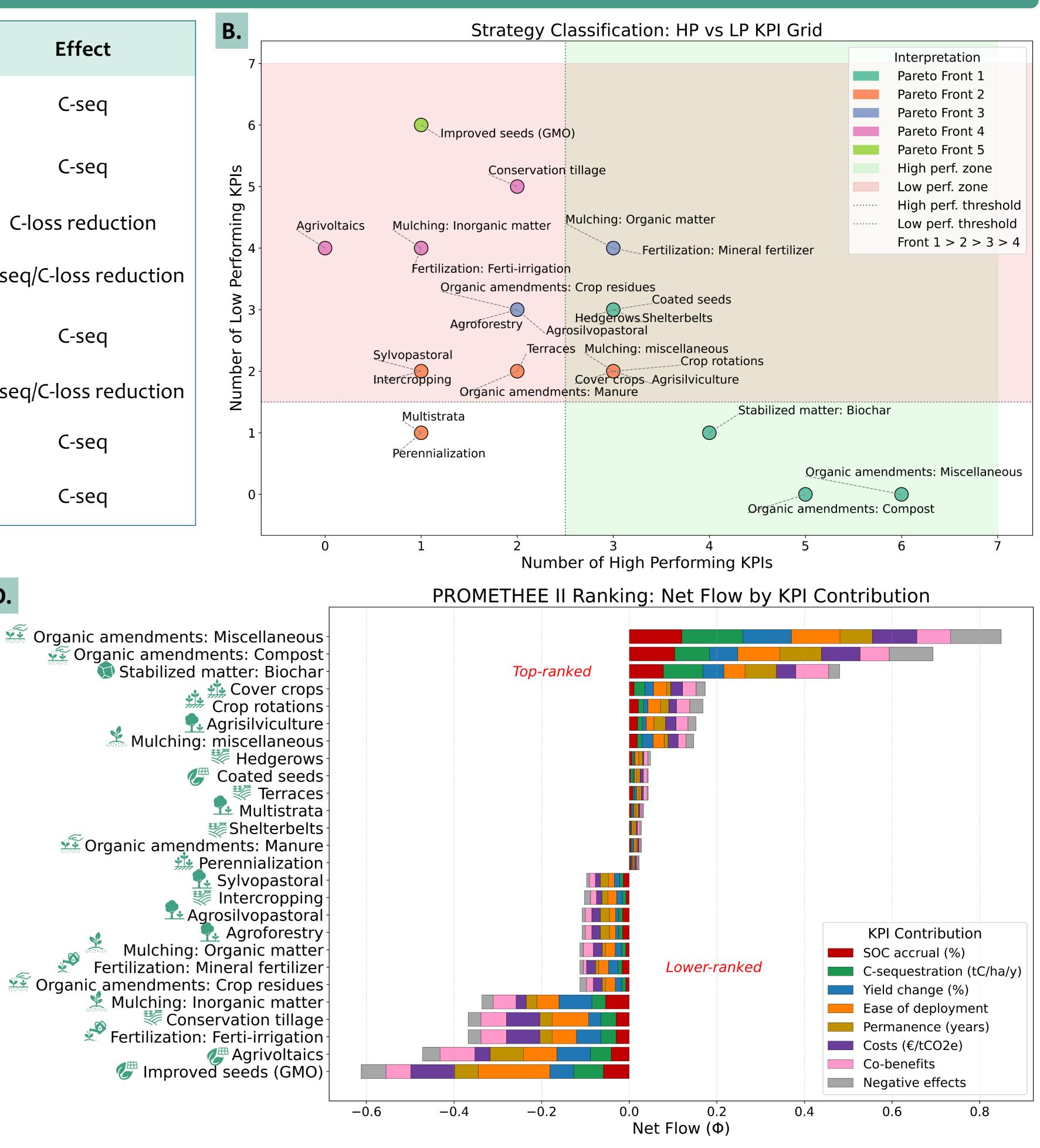
Multistrata

Agrosilvopastoral

Shelterbelts Coated seeds

				RESULTS		
[%]	C-sequestration [tC ha ⁻¹ y ⁻¹]	Yield change [%]	Costs [€ tCO₂e⁻¹]	Effect	B. 7 -	
2	0.01 - 2	0.32 – 62	28 – 120	C-seq	6 -	
5	-5 – 6.8	-50 – 40	10 — 200	C-seq	SIdX 5-	
-5	0.02 - 1	-18 – 30	10 – 740	C-loss reduction	orming	Ą
	0.012 – 1.8	2 — 120.1	30 – 400	C-seq/C-loss reduction	ow Performing KPIs	
	0.09 – 6.1	-10 – 430	30 – 130	C-seq	of L	
5	0.3 – 0.8	0.13 – 290	50 – 120	C-seq/C-loss reduction	Number	
.1	0.2 – 3.27	-31.8 – 470	30 – 200	C-seq	1 -	
	0.54 – 2.10	-20 – 60	5–>4000	C-seq	0 -	
Seco	ond KPI by Weight)					
	Organic amendments: Miscellaneous Carbon removal goals: High sequestration & co-benefits			D. Stabilized matter: Bioch Cover crown Crop rotation		
	Organic amendments: Compost					
	aneous			Agrisilvicultu يي Mulching: miscellanec ﷺ Hedgero ش Coated see		
Col	Cover crops			Multistra		
amen	nendments: Manure Stabilized matter: Biochar			Shelterbe 🗱		
	Perennialization			Organic amendments: Manu		

TAKE-HOME MESSAGE


Strategies in Pareto Front 1 (B) combine high performance and few weaknesses. Top-ranked strategies (e.g., Biochar, Compost, diverse amendments) show strong sequestration potential and broad performance, though may pose cost or feasibility challenges.

GAIA (C) & PROMETHEE (D) reveal strategy-KPI dynamics for policy support. **Top-right:** Drives climate mitigation through high carbon sequestration and ecosystem co-benefits. **Top-left:** attractive for farmer adoption (yield enhancing and scalable). **Bottom-right:** Supports resilient agroecosystems and durable carbon storage. **Bottom-left:** low impact

Next steps include **regional filtering (e.g., French)** for tailored strategy selection at national scale.

The results are available upon request. Do not hesitate to contact the lead author.

