Sensitivity of grounding-line migration to ice-shelf pinning

Thomas Gregovl'z'*, Frank Pattynl, and Maarten Arnst?

ef,tﬁﬂpagg'esd !Laboratoire de Glaciologie, Université libre de Bruxelles, Belgium

?Computational & Stochastic Modeling, Université de Liége, Belgium
*Now at Institute of Earth Surface Dynamics, Université de Lausanne, Switzerland

Motivation Numerical experiments: bifurcation plots
Pinning points —bedrock features that can locally ground the floating ice- Bed A Bed B
can stabilize ice shelves by providing resistance to flow. However, recent ob- ) 1
servations indicate a progressive unpinning of Antarctic ice shelves, which may Bed A
accelerate ice loss (Miles and Bingham, 2024). While numerical studies have ex-
plored their impact (e.g., Favier and Pattyn, 2015; Rydt and Gudmundsson, 2016; = g"
Henry et al., 2022), theoretical frameworks often neglect pinning dynamics (e.g., Q .
Schoof, 2007; Pegler, 2018). Here, we examine their effect on ice-sheet dynamics E %
to bridge this gap and in particular assess the well-posedness of models. gn% @
Ice-flow model O
Shallow-shelf approximation for isothermal marine ice sheets (Morland, 1987;
MacAyeal, 1989): find (h, u) that obey the following equations:
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Mass balance: ate Mass accumulation rate a Mass accumulation rate a
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To better understand the impact of pinning points, we perform a series of numerical experiments on idealized set-ups. We consider two synthetic 2D bed geometries
g y
Momentum balance: o (bed A/bed B) and compute the associated bifurcation plots, which represent the set of steady states as a function of a. These plots are obtained for the two
Jiecous <trese (reguioisod Coulomb)  driving stress formulations (unregularized /regularized). To generate the bifurcation plots, we employ numerical continuation methods (e.g., Keller, 1977; Mulder et al., 2018).
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Ve [2hn(u) S(u)] + 1o, 7 =19, 7 + 1o, 7 in Q (2%) The weak form involves integrals over €2, and (2. Singularity:
Reynolds’ theorem: = associated with pinning points
§™, ].Qg :
R . F(h) :/ F(R)dQ = OF :/ F(h+ k) dQ +/ F(h)dQ = due to geometry/momentum-balance coupling
& l — Q (h Q (h O (hidh = persists for smooth beds and vanishing friction
= 5(h) JS2(h) I g(h+0h) ,
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= Practically:
- 0 P X h—+6h h h—+&h = increased numerical sensitivity (Ax and At)
5F ~ fix : i i = regularization — nonphysical solutions
0 1  OX | . Ox | L
- Q, SE S — | = regularization — strong dependency on ¢
o A ; : :
TR 7\
N 5h 6h _
5 s JU Perspectives:
= _ 6X_ ~ _5/7 ox ( ) = non-smooth method (e.g., contact approach)
o linearization v/ linearization X , . ,
v X = novel model (e.g., ‘grounding zone')

Ingredient for singularity: f #0 = 7, # 0 or 7, # 77 at [ . = higher-order ice flow (full Stokes)

The equations (1)—(2) are written in a weak form and then discretized with the
finite-element method. An appropriate quadrature rule is performed for the
elements that contain both grounded and floating areas (Seroussi et al., 2014).

Here, the inequality 7, # 77 is associated with a discontinuous upper-surface slope. Essentially, this stems
from the assumption of a vertical cryostatic equilibrium in the momentum balance (see Schoof, 2011).
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