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Motivation

Pinning points –bedrock features that can locally ground the floating ice–
can stabilize ice shelves by providing resistance to flow. However, recent ob-
servations indicate a progressive unpinning of Antarctic ice shelves, which may
accelerate ice loss (Miles and Bingham, 2024). While numerical studies have ex-
plored their impact (e.g., Favier and Pattyn, 2015; Rydt and Gudmundsson, 2016;
Henry et al., 2022), theoretical frameworks often neglect pinning dynamics (e.g.,
Schoof, 2007; Pegler, 2018). Here, we examine their effect on ice-sheet dynamics
to bridge this gap and in particular assess the well-posedness of models.

Ice-flow model

Shallow-shelf approximation for isothermal marine ice sheets (Morland, 1987;
MacAyeal, 1989): find (h, u) that obey the following equations:
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Mass balance:
∂th + ∇ · (h u) = a

mass accumulation
rate

(1)in Ω

unify

Momentum balance:

∇ · [2h η(u) Σ(u)] + τb = τg

∇ · [2h η(u) Σ(u)] = τf

∇ · [2h η(u) Σ(u)] + 1Ωg τb = 1Ωg τg + 1Ωf τf

in Ωg

in Ωf

in Ω

(2a)
(2b)
(2∗)

driving stress
friction stress

(regularized Coulomb)viscous stress

The equations (1)–(2) are written in a weak form and then discretized with the
finite-element method. An appropriate quadrature rule is performed for the
elements that contain both grounded and floating areas (Seroussi et al., 2014).

Numerical experiments: bifurcation plots
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To better understand the impact of pinning points, we perform a series of numerical experiments on idealized set-ups. We consider two synthetic 2D bed geometries
(bed A/bed B) and compute the associated bifurcation plots, which represent the set of steady states as a function of a. These plots are obtained for the two
formulations (unregularized/regularized). To generate the bifurcation plots, we employ numerical continuation methods (e.g., Keller, 1977; Mulder et al., 2018).

Anatomy of a singularity

The weak form involves integrals over Ωg and Ωf.
Reynolds’ theorem:

F (h) =
∫

Ωg(h)
f (h) dΩ ⇒ δF =

∫
Ωg(h)

f (h + δh) dΩ︸ ︷︷ ︸
fixed domain

+
∫

Ωg(h+δh)
f (h) dΩ︸ ︷︷ ︸

moving domain

δx

h h + δh
δx

h h + δh

δx ∼ δh
linearization 3

δx ∼ (δh)1/2

linearization 7

δF ∼ f δx
δF
δh ∼ f δx

δh

Ingredient for singularity: f 6= 0 ⇒ τb 6= 0 or τg 6= τf at Γgl.
Here, the inequality τg 6= τf is associated with a discontinuous upper-surface slope. Essentially, this stems
from the assumption of a vertical cryostatic equilibrium in the momentum balance (see Schoof, 2011).

Take-home messages

Singularity:
• associated with pinning points
• due to geometry/momentum-balance coupling
• persists for smooth beds and vanishing friction

Practically:
• increased numerical sensitivity (∆x and ∆t)
• regularization → nonphysical solutions
• regularization → strong dependency on ε

Perspectives:
• non-smooth method (e.g., contact approach)
• novel model (e.g., ‘grounding zone’)
• higher-order ice flow (full Stokes)
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