

#### Motivation

Pinning points –bedrock features that can locally ground the floating ice– can stabilize ice shelves by providing resistance to flow. However, recent observations indicate a progressive unpinning of Antarctic ice shelves, which may accelerate ice loss (Miles and Bingham, 2024). While numerical studies have explored their impact (e.g., Favier and Pattyn, 2015; Rydt and Gudmundsson, 2016; Henry et al., 2022), theoretical frameworks often neglect pinning dynamics (e.g., Schoof, 2007; Pegler, 2018). Here, we examine their effect on ice-sheet dynamics to bridge this gap and in particular assess the well-posedness of models.

## **Ice-flow model**

**Shallow-shelf approximation** for isothermal marine ice sheets (Morland, 1987; MacAyeal, 1989): find (h, u) that obey the following equations:



The equations (1)-(2) are written in a weak form and then discretized with the finite-element method. An appropriate quadrature rule is performed for the elements that contain both grounded and floating areas (Seroussi et al., 2014).

# Sensitivity of grounding-line migration to ice-shelf pinning

Thomas Gregov<sup>1,2,\*</sup>, Frank Pattyn<sup>1</sup>, and Maarten Arnst<sup>2</sup>

<sup>1</sup>Laboratoire de Glaciologie, Université libre de Bruxelles, Belgium <sup>2</sup>Computational & Stochastic Modeling, Université de Liège, Belgium \*Now at Institute of Earth Surface Dynamics, Université de Lausanne, Switzerland

| in $\Omega_{ m g}$       | (2a) |
|--------------------------|------|
| in $\Omega_{\mathrm{f}}$ | (2b) |
| in $\Omega$              | (2*) |







To better understand the impact of pinning points, we perform a series of numerical experiments on idealized set-ups. We consider two synthetic 2D bed geometries (bed A/bed B) and compute the associated bifurcation plots, which represent the set of steady states as a function of a. These plots are obtained for the two formulations (unregularized/regularized). To generate the bifurcation plots, we employ numerical continuation methods (e.g., Keller, 1977; Mulder et al., 2018).

## Anatomy of a singularity

The weak form involves integrals over  $\Omega_g$  and  $\Omega_f$ . **Reynolds' theorem:** 

$$F(h) = \int_{\Omega_{g}(h)} f(h) \, \mathrm{d}\Omega \quad \Rightarrow \quad \mathbf{d}$$

| $\delta F \sim$                 | $f  \delta x$                 |  |
|---------------------------------|-------------------------------|--|
| $rac{\delta F}{\delta h} \sim$ | $f \frac{\delta x}{\delta h}$ |  |

# **Ingredient for singularity**: $f \neq 0 \Rightarrow \tau_b \neq 0$ or $\tau_g \neq \tau_f$ at $\Gamma_{gl}$ .

Here, the inequality  $\tau_{\rm g} \neq \tau_{\rm f}$  is associated with a discontinuous upper-surface slope. Essentially, this stems from the assumption of a vertical cryostatic equilibrium in the momentum balance (see Schoof, 2011).

# EGU General Assembly 2025, Vienna



# **Numerical experiments: bifurcation plots**



Mass accumulation rate a







#### **Take-home messages**

#### Singularity:

associated with pinning points

due to geometry/momentum-balance coupling persists for smooth beds and vanishing friction

#### **Practically:**

• increased numerical sensitivity ( $\Delta x$  and  $\Delta t$ ) • regularization  $\rightarrow$  nonphysical solutions • regularization  $\rightarrow$  strong dependency on  $\varepsilon$ 

#### **Perspectives:**

non-smooth method (e.g., contact approach) novel model (e.g., 'grounding zone') higher-order ice flow (full Stokes)