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1. Introduction 3. Model and method 

2. Universal differential equations  
Universal Differential Equations (UDEs) combine process-based ordinary 
differential equations (ODEs) with data-driven universal approximators 
(𝑈), such as neural networks, enabling the integration of physical models 
and machine learning.

State-space model 
For the vector or state variables 𝒙 with inputs 𝒖, outputs 𝒚 and 
parameters 𝜽, the general state-space model (SSM) is given by:

𝑑𝒙

𝑑𝑡
= 𝑔 𝒙, 𝒖, 𝜽

𝒚 = ℎ(𝒙, 𝒖, 𝜽∗)
Depending on the model type, 𝑔 is given by:

with 𝑔𝑖 a process-based submodel.

Training data-driven universal approximators
Example: 𝑈 𝒙, 𝒖, 𝜽𝑈  replaces 𝒚int = 𝑔3(𝒙, 𝒖, 𝜽3) 

• Offline training: min
𝜽𝑈

𝐽(𝑈 𝒙, 𝒖, 𝜽𝑈 , 𝒚int,obs)

(+) Easier implementation: 𝑈 trained independent of SSM 
(-) 𝑦int,obs does not always exist, possibly unstable hybrid model 

• Online training: min
𝜽𝑈

𝐽(𝒚, 𝒚obs)

(+) Directly optimise on output of interest 𝒚
(-) Need for SSM implemented in a differentiable programming 

framework to efficiently calculate 
𝜕𝐽

𝜕𝜽𝑈

Differentiable programming frameworks 
Programming frameworks compatible with automatic differentiation 
(AD) and/or adjoint models:
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Terrestrial evaporation (𝑬)
• Crucial role in modulating climate dynamics and water resources.
• Not directly observable from space, limited in-situ observations.
• Challenging to model due to variety of atmospheric drivers and 

environmental stressors. 
• Objective: Improve 𝐸  modelling by leveraging the universal 

differential equation framework. 

Approaches to modelling evaporation

Model description: 3SEB-FR 
The three source energy balance force-restore (3SEB-FR) model aims to combine a relatively complex description of 
surface fluxes (3SEB) with a simpler soil moisture scheme (FR) to account for water stress limitation on 𝐸. 

 

 

Numerical ODE solution
Despite evidence that the numerical method chosen to solve the nonlinear differential equations of the hydrological 
SSM has a large effect on the numerical error, many hydrological models use ad hoc “sequential flux update” 
approaches [4]. By implementing the model in Julia, a wide variety of established numerical solvers is available via the 
DifferentialEquations.jl software and hence their effect on the simulation can be assessed. 

Example: SSM with 𝒙 = 𝑥1, 𝑥2
𝑇 and 𝑔 𝒙, 𝒖, 𝜽 = 𝑔(𝒙)

5. Future perspectives
Hybrid model development
• Leverage UDE framework to replace the empirical 𝑟𝑠𝑐  formulation by 

an online-trained 𝑈 at the BE-Bra site.
• Extend the analysis to multiple eddy covariance sites, allowing the 

prediction of 𝑟𝑠𝑐 by 𝑈 to be modulated based on static ecosystem 
characteristics. 

• Benchmark the model predictions by comparing to an empirical 
machine learning method from [6].

Numerical considerations
• Further experiment with different numerical solvers considering 

numerical error, stability and computational expense.
• Explore the different options on how to calculate gradients of 

numerical solutions of ODEs outlined in [7] and assess how these 
interact with the solvers.
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Process-based models
LSM: CLM, HTESSEL…
RS: JPL-PT, PM-MOD…

Machine learning
FLUXCOM-X

Hybrid models
GLEAM4
3SEB-FR

4. Results  
Model forcings and 𝜆𝐸 observations from the ICOS eddy covariance site 
BE-Bra from FluxDataKit [5] at 30’ temporal resolution. Therefore, fixed-
step schemes are applied with Δ𝑡 =30’. The EE scheme is applied with 
manual state correction (cf. pane 3.).

• Difference in numerical scheme alters the simulated states and 
fluxes.

• Choice of forcing interpolation method affects stability of the ODE 
solver (not shown).

ODE Neural ODE UDE

𝑔1 ∘ 𝑔2 ∘ 𝑔3 (𝒙, 𝒖, 𝜽) 𝑈 𝒙, 𝒖, 𝜽 𝑔1 ∘ 𝑔2 ∘ 𝑈 (𝒙, 𝒖, 𝜽)

https://github.com/olivierbonte/DifferentiableEvaporation

Framework of choice

FR
The SSM is based on the ISBA-2L model [2]:

𝑑𝑤1

𝑑𝑡
=

𝐶1

ρ𝑤𝑑1
𝑃𝑠 − 𝑄𝑠 − 𝐸𝑠 − 𝐷1

𝑑𝑤2

𝑑𝑡
=

1

ρ𝑤𝑑2
𝑃𝑠 − 𝑄𝑠 − 𝐸𝑠 − 𝐸𝑡 − 𝐾2

𝑑𝑤𝑟

𝑑𝑡
= 𝑓𝑣𝑒𝑔𝑃 − 𝐸𝑖 − 𝐷𝑐

Following [3], a wet vegetation fraction (𝑓𝑤𝑒𝑡) is defined based 
on 𝑤𝑟. 

Sequential flux updates
𝑥1 𝑡 + Δ𝑡 = 𝑥1 𝑡 + 𝑔( 𝑥1 𝑡 , 𝑥2 𝑡 𝑇)Δ𝑡

𝑥2 𝑡 + Δ𝑡 = 𝑥2 𝑡 + 𝑔( 𝑥1 𝑡 + Δ𝑡 , 𝑥2 𝑡 𝑇)Δ𝑡
Δ𝑡 = fixed

(-) Order of state updating matters
(-) No separation of conceptual model and 

numerical implementation 
 ⇒ no distinction between conceptual and 

numerical error

Established numerical solvers
1) Explicit Euler (EE): 𝒙 𝑡 + Δ𝑡 = 𝒙 𝑡 + 𝑔 𝒙 𝑡 Δ𝑡, Δ𝑡 = fixed

 (+) Computationally cheap for large enough Δ𝑡
 (-) Stability can require very small Δ𝑡 ⇒ hydrologists often apply manual 
  corrections for states to be within physical bounds

2) Adaptive Implicit Euler (IE): 𝒙 𝑡 + Δ𝑡 = 𝒙 𝑡 + 𝑔 𝒙 𝑡 + Δ𝑡 Δ𝑡,

 Δ𝑡 ≠ fixed
 (+) Stable method, avoids overshoots
 (+) Computationally efficient adapting of Δ𝑡 based on model stiffness to 
  match user-defined error tolerance

Subscript Component

𝑠 Soil

𝑐 Canopy

𝑎 Air

3SEB
The  Shuttleworth-Wallace 2SEB model [1], which accounts for 
soil  evaporation (𝜆𝐸𝑠) and transpiration (𝜆𝐸𝑡), is extended to 
explicitly include interception ( 𝜆𝐸𝑖 ). Each of the 𝜆𝐸 
components is calculated using the Penman-Monteith equation 
( 𝑃𝑀 ) with varying inputs of available energy ( 𝐴 ) and 
aerodynamic/surface resistances (𝑟𝑎/𝑟𝑠): 

λ𝐸 = λ𝐸𝑖 + λ𝐸𝑡 + λ𝐸𝑠 =
𝑓𝑤𝑒𝑡λ𝐸𝑃𝑀 0, 𝑟𝑎𝑐 , 𝐴𝑐 + 1 − 𝑓𝑤𝑒𝑡 λ𝐸𝑃𝑀 𝑟𝑠𝑐 , 𝑟𝑎𝑐 , 𝐴𝑐

+λ𝐸𝑃𝑀 𝑟𝑠𝑠, 𝑟𝑎𝑠 , 𝐴𝑠
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