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Rationale Primary Objectives
Low-temperature geothermal energy could 
reduce the need of diesel or oil for heating 
in remote Yukon, Canada.   

Develop a method to integrate both 
physical and socio-economic considerations 
in an evaluation of the geothermal potential 
in remote communities.

Advance scientific techniques for 
geothermal resource evaluation in data 
scarce areas.

Study Site

Yukon is Canada’s 
northwestern-most 
territory. SW Yukon is located 
in the Canadian Cordillera and 
is composed of terranes that 
originated as sedimentary basin 
arc systems and microcontinents. 

The distribution of terranes in 
SW Yukon is controlled by faults 
and shear zones that formed during 
and after accretion. The Cretaceous 
to present Denali fault locally increases 
bedrock permeability.

Figure 1: Yukon Terranes 
focused on the study area 
(YGS, 2020). 
Tested boreholes: 
     KFN-L (387 m)
     DRGW (220 m)
 

Geology

This project takes place on the traditional 
territory of Kluane First Nation. Burwash 
Landing is a small community (<100) and 
the seat of Kluane First Nation government. 
The community primarily relies on diesel for 
electricity, and oil and biomass for heating.  
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Figure 4: The scanline method was used to collect fracture 
data at each outcrop. 36 scanlines were collected across 
9 rock types from 0.8 to 22 km from the Denali fault core. 
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The distance from Denali fault has little correlation 
with fracture properties. Fractures are influenced 
by other local faults and the complex tectonic setting.

Rock types and quaternary deposits can be grouped 
into four hydrostratigraphic units.

 

Fracture properties are favourable 
for a geothermal reservoir: 
- High fracture intensity
- High open fracture connectivity 
- Steep fractures may facilitate 
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Figure 2: (A) Physical and (B) social 
parameters used in the geothermal 
favourability assessment. 
 

Figure 5: 
Schematic 
figure of the 
field setup 
including 
composite 
cable. Not 
to scale. The 
cable diameter 
is 7.8 mm. 
 

  

Figure 6: Stratigraphic column at KFN-L and associated temperature
profile, thermal response, and thermal conductivity from FO-DTS.
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)Objective: Model advection & 
heat transfer to understand 
the influence of groundwater flow 
and local permeability on 
temperature at depth. 

Figure 7: Cross-section at study site through reference boreholes.

The initial model considers heat 
flow, thermal cond., hydraulic 
cond., and recharge as est. in 
the field. The parameters are 
then optimized to best fit the 
temperature profiles measured 
in DRGW and KFN-L. 

Figure 9: Conceptual standing column well using 
pre-existing borehole and permafrost protection. 

Fibre-optic distributed temp. sensing was 
used during an active thermal response 
test to produce high-resolution in-situ 
effective thermal conductivity profiles. 

Sensitivity analysis for the 
coupled heat-flow model 
Est. deep geothermal potential.

Model ground-source 
heat exchanger for the 
pilot project to assess 
energy potential as a 
standing column well.

(b) Kluane Schist(a) Station Creek

Over the past 10 years, Kluane First Nation
has been actively seeking sustainable
energy solutions. They have installed a wind 
turbine and solar panels and are interested 
in geothermal energy.

The Duke River area in southwestern Yukon 
was identified due to its low Curie-point 
depth, proximity to the Denali fault, local 
topographic gradient, and an interest 
from Kluane First Nation.
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Figure 3: Spatial socio-economic data overlayed on the thermal-permeability 
dominant favourability map with community buffers and power networks.

A small-scale pilot project will show 
the use of geothermal to the community 
and advance knowledge of shallow 
geothermal in northern climates.  

Retrofit exploration borehole
Protect permafrost
Integrate into current heating system  

2

1

0

-1

-2

-3

D
ep

th
 (k

m
)

Distance (km)0 5 10 15

DRGW
KFN-L

120

80

100

60

40

20
0

Temperature 
( C)o

Ground-
    water 
      flow

Co
nd

uc
tio

n 
 

do
m

in
at

ed

KFN-L: 89 mW m
DRGW: 99 mW m

-2

-2

Figure 8: COMSOL Multiphysics model of groundwater flow and temperature 
distribution based on coupled groundwater flow and heat transfer mode.
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