GEOPHYSICAL INVESTIGATION OF SLOPE ASPECT EFFECT ON SOIL AND ROCK MOISTURE INTERACTIONS

Soil moisture: unsaturated water storage in soil/regolith

- Rock moisture governs plant-water availability and streamflow generation [1]

- temporal trends in subsurface resistivity as a proxy for soil/rock moisture

Dry Creek Experimental Watershed, Boise, Idaho, USA

- Semi-arid mountain watershed

Treeline Site 2024 Water Year Meteorological Data

Time-lapse Electrical Resistivity Tomography (ERT)

- resulting electric potential
- Varying the distance between electrodes gives different depths of investigation
- A 72 electrode Wenner array with 1m spacing and a Lippman 4point light 10W resistivity meter was employed
- averaged by week
- the tomography images

Department of Geosciences, Boise State University, Boise, Idaho, United States of America

Correspondence: joshuakietzmann@u.boisestate.edu

Joshua Kietzmann, Skye Bensel, James McNamara, and Qifei Niu

Key Takeaways

- NE and SW slopes exhibit different spatial distributions of saturation
- Temporal decoupling of shallow soil moisture and deep rock moisture
- Timelapse ERT measurements make good observations of weekly long-term trends in subsurface water

IV. Discussion/Conclusions

Insights from Previous Studies at Treeline Site

- An adjacent hillslope was studied in [2]
- Regolith thickness ranges from <0.2m-2m
- Fractured/weathered bedrock thickness ranges from 0.2m-45m
- Northern-facing slopes have more vegetation

Spatial Trends

Northeast slope (A):

- Irregular resistivity/saturation along slope
- Significant infiltration only reaches 5m-10m depth Southwest slope (B):
- Uniform resistivity/saturation along slope
- Uppermost 0-2m of soil has higher resistivity but higher saturation than the bedrock

Temporal Trends

- Soil moisture on both slopes follows expected wetting and drying trends
- Rock moisture in northeast slope exhibits large variations in saturation while southwest slope is steadier
- Soil and rock moisture is decoupled on both slopes

	Week of S _{max}		
	NE Slope	Тор	SW Slope
Shallow [0m,2m]	June 16, 2024	May 26, 2024	June 16, 2024
Deep [5m,10m]	April 7, 2024	May 26, 2024	July 7, 2024
Lag Time	-10 weeks	~0 weeks	+3 weeks

Table 2: Week of peak saturation for each subsurface location. The lag time is reported as (+) if the shallow location leads and (-) if the deep location leads

V. Future Work

Near-Surface Geophysics

- Seismic refraction tomography survey
- Drone-based electromagnetic survey
- Spatial distribution of regolith depth
- Thickness of weathering front

Conceptual Model of Rock Moisture

- Physical vs chemical weathering
- Holding mechanism of weathered rocks

Incorporate rock moisture spatial and temporal mechanisms

Figure 8: Skye downloads data from th ERT instrument in September 2024