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Understanding heat transfer in rock fractures is crucial for optimizing geothermal energy

extraction, nuclear waste storage, and other subsurface engineering applications (Klepikova et

al., 2016; Luo et al., 2016).

The roughness of the fracture walls can significantly impact heat transfer because the variability

of aperture and shape promotes preferential paths for flow and advective transport (“flow

channeling”) and causes variation in the fluid-rock diffusive heat exchange. However, there is

no clear consensus on the effects of flow channeling on the thermal exchange between the fluid

and the rock matrix, as some authors observed a decrease, due to increased flow velocity and

shortened transit times in the channeled regions (Neuville et al., 2010), while others report an

increase, as radial conduction from the channel to the matrix is more efficient for heat transfer

than the linear conduction occurring in a parallel plate model (de La Bernardie et al., 2018).
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Cold pulse injection into a flat fracture over a defined time interval (Liu et al., 2007):
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Initial & Boundary Conditions

• Inlet-outlet pressure gradient applied

• No-flow BC on remaining surfaces

• Uniform initial temperature of 25ºC

• 1-hour 5ºC cold pulse at the inlet

• Thermal insulation all other boundaries• Outflow condition at the outlet

Solver Configuration

❑ Pressure and Temperature fields discretized using first-order shape functions

Good balance between accuracy and computational cost

❑ Time-dependent configuration: 100 hours with 0.1 h maximum step constraint
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Previous studies (de La Bernardie et al., 2018) show that roughness

can lead to t−1 thermal tailings, typical of cylindrical-shaped tubes.
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