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Motivation

Surface geometry inversion (SGl) methods attempt to estimate positions of in-
terfaces between rock units. While successfully applied in numerous studies,
none rigorously investigate whether such highly non-linear inverse problems are
well-posed. This study explores these ideas, focusing on potential field data.

Voxel inversion versus SGI

Voxel inversion: The subsurface is discretized on a mesh. Piecewise physical
properties are estimated by solving an underdetermined problem. Typically, a lo-
cal optimization algorithm minimizes an objective function combining data misfit,
&4, and model regularization, ¢.,, with tradeoff parameter, 5:

min &(m) = @4(M) + SP,(M) s.t. &4~ Dy

m

This minimum-structure approach typically produces smoothed models incon-
sistent with geological models, e.g. Fig. 1.
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Figure 1: Voxel inversion of magnetic data to model two kimberlite pipes [8].

Surface geometry inversion: Interfaces between rock units are parameterized
and their locations estimated. Resulting models are more consistent with geo-
ogical models, e.g. Fig. 2b shows the SGI result for the same data inverted Iin
~ig. 1. Our approach represents interfaces using triangulated surfaces (3D) or
ine elements (2D), and inversion parameters are node positions. SGI problems
are often formulated as overdetermined problems where only a misfit term is
minimized subject to some constraints, c:
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Our constraints prohibit non-geological surface intersections and we minimize
using a genetic algorithm (GA).

s.t. ¢c=0.

Depth (m)

Figure 2: SGI of magnetic data to model two kimberlite pipes [8]: (a) initial model, (b) inversion
result.
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Classification of SGI approaches

SGI approaches generally fall into five categories, illustrated in Fig. 3.
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Figure 3: Examples from different SGI categories: (a) parametric shapes [2]; (b) explicit
surfaces [7]; (c) growing/shrinking structures [4]; (d) mesh warping [1]; (e) implicit surfaces [9].

Prior studies using our SGIl approach

Our SGI refines an initial surface-based model by adjusting node positions to
better fit geophysical data. The kimberlite example of [8], Fig. 2, provides one
example. Other examples are below.
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Figure 4: SGI of magnetic data to model a seafloor massive sulfide deposit [5]: (a) geological
Interpretation, (b) initial model, (c) inversion result.
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Figure 5: SGI of transient electromagnetic data to model a thin conductor [6]: (a) initial model in
iInversion parameterization, (b) volumetric expansion for data calculation, (c) inversion result.

Assessing the well-posedness of SGI

We need to show that the solution is both stable and unique.
o Stability: The algorithm’s behaviour in the presence of noise.

e Unigqueness: Are the resulting models the same from a geological
perspective despite being mathematically different?
Here we perform some preliminary tests on a simple 2D model, Fig. 6. We show

the results of running our SGI approach 10 different times, each using a different
random seed for the genetic algorithm.
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Figure 6: Our 2D test model (solid black lines), surface and borehole gravity data (coloured
points) and node position search bounds for SGI (black dashed lines).

Inversions with noise-free data
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Figure 7: SGl results with noise-free data: (a) 3 nodes, (b) 4 nodes, (c) 8 nodes.

Inversions with noisy data (8%)
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Figure 8: As in Fig. 7 but with 8% noise added.

Observations
e Adding less noise to the data results in smaller changes in the recovered
model, suggesting the solutions are stable.
e With a small number of nodes and low noise, the solutions seem unique,
suggesting a simple practical approach to form a uniquely determined
problem: reduce the number of parameters.

e With an increasing number of nodes, the uniqueness suffers and there is
the suggestion of multiple local minima.

Surface subdivision

The non-uniqgueness of the problem can be mitigated by reducing the number of
parameters. The inversion can work with a set of “control nodes” on a coarse
surface and use surface subdivision to generate smooth models with which to
calculate the data response, Fig. 9.

Figure 9: (a) A coarse control surface, (b) subdivided once, (c) subdivided twice.

Inversions with noise-free data
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Figure 10: As in Fig. 7 (noise-free) but with one level of subdivision.

Inversions with noisy data (8%)
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Figure 11: As in Fig. 8 (8% noise) but with one level of subdivision.

Adding regularization

Instead of surface subdivision, we can consider an equidistance regularization
term [3] that measures the variance of the distances between all pairs of nodes.
We solve a multi-objective problem using a Pareto multi-objective GA:

Inversions with noisy data (8%)
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Figure 12: As in Fig. 8c (8% noise, 8 nodes) but with equidistance regularization applied:
solutions chosen from the Pareto fronts with (a) lower regularization / larger misfit of 40.0, (b)
misfit of 1.0 expected for this synthetic scenario, (c) lowest misfit / largest regularization. The
lowest misfit achieved across all runs was 0.95.

Observation: More stable and unique solutions are obtained using either sub-
division or regularization.

References: [1] Alvers et al., 2023, Inversion of potential fields by interactive optimization of 3D subsurface models using a spring-based space warping and evolution strategy, Geophysics, 88. [2] Ben et al., 2022, Interpretation of magnetic anomalies by simple geometrical structures using the manta-ray foraging optimization, Front. Earth Sci., 10. [3] Bijani et al., 2015, Three-dimensional gravity inversion using graph theory to delineate the skeleton of homogeneous
sources, Geophysics, 80. [4] Cai et al., 2022, Three-dimensional inversion method for small-scale magnetic objects based on normalized magnetic source strength, Micromachines, 13. [5] Galley et al., 2021, Magnetic and gravity surface geometry inverse modeling of the TAG active mound, JGR: Solid Earth, 126. [6] Lu et al., 2024, Surface geometry inversion of transient electromagnetic data, Geophysics, 89. [7] Roy et al., 2021, Gravity inversion of basement relief
using particle swarm optimization by automated parameter selection of Fourier coefficients, Computers & Geosciences, 156. [8] Vatankhah et al., 2024, Magnetic surface geometry inversion of kimberlites in Botswana, Geophysical Prospecting, 72. [9] Zheglova et al., 2018, Multiple level-set joint inversion of traveltime and gravity data with application to ore delineation: a synthetic study, Geophysics, 83.



