

CLUSTER OF EXCELLENCE CLIMATE, CLIMATIC CHANGE, AND SOCIETY (CLICCS)

ON Earth System Modelling INTERNATIONAL MAX PLANCI RESEARCH SCHOO

Land of opportunities: Aligning organic farming and conservation targets in Europe

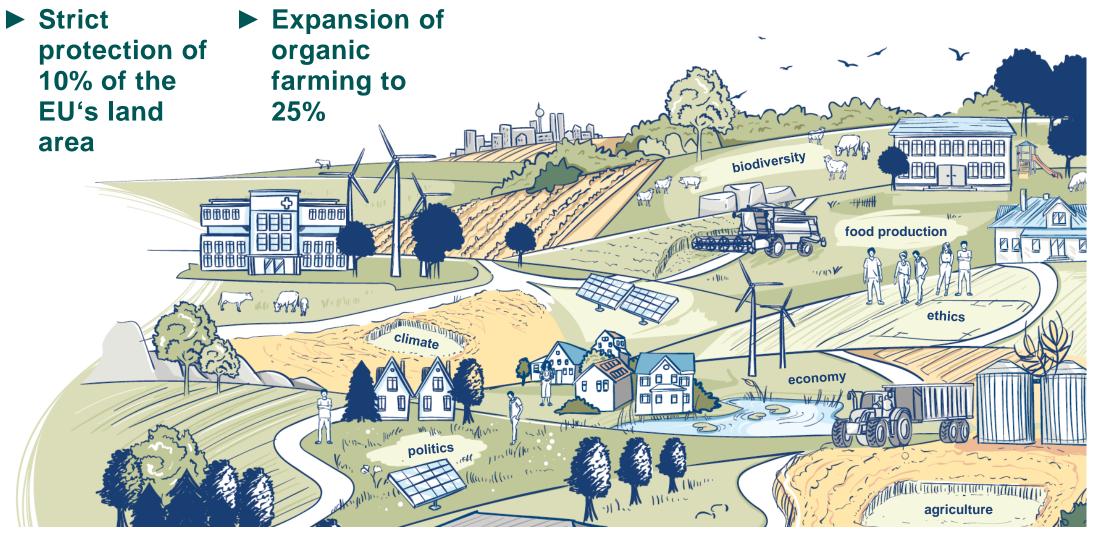
Luisa Gensch

Uwe A. Schneider, Kerstin Jantke, Livia Rasche

University of Hamburg, Max Planck Institute for Meteorology

NEGATIVE EFFECTS OF INTENSIVE AGRICULTURE ON BIODIVERSITY, SOIL HEALTH AND ENVIRONMENT

https://medium.com/remote-sensing-in-agriculture/is-sustainable-industrial-farming-a-reality-5ba0966ab11d



Strict protection of 10% of the EU's land area

 Strict
 Protection of 10% of the EU's land area
 Expansion of organic farming to 25%

Deutsche Akademie der Naturforscher Leopoldina e.V. (2024). Zukunftswerkstatt Landwende: Wie wollen wir leben? Unsere Vision.

MODELING APPROACH TO INTEGRATE LAND USE CONFLICTS

Research questions

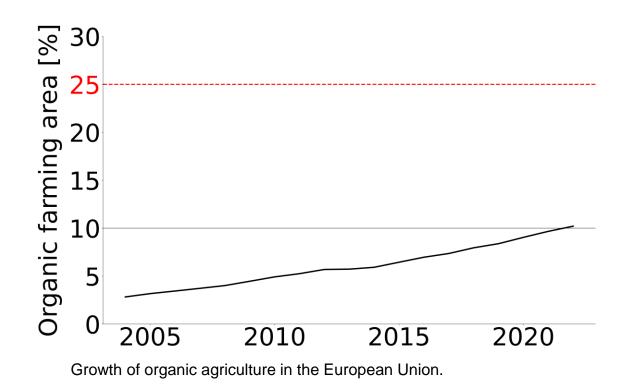
- How can we allocate land optimally?
- How does the fulfillment of both targets impact economic factors?
- ► How large are land use conflicts?

CLUSTER OF EXCELLENCE CLIMATE, CLIMATIC CHANGE, AND SOCIETY (CLICCS)

ON Earth System Modellin INTERNATIONAL MAX PLANC RESEARCH SCHOO

Land of opportunities: Aligning organic farming and conservation targets in Europe

Luisa Gensch


Uwe A. Schneider, Kerstin Jantke, Livia Rasche

University of Hamburg, Max Planck Institute for Meteorology

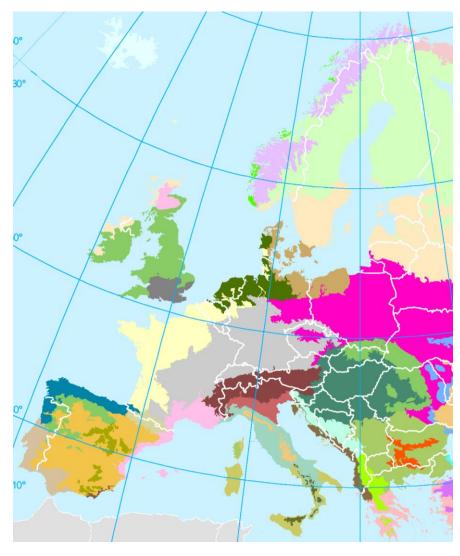
- intensive agricultural practices have taken a toll on biodiversity, soil health and the environment (Foley et al., 2011)
- The European Green Deal aims to counteract these issues with two ambitious targets by 2030:
 - 1) the protection of 30% of the EU's land area, and the strict protection of 10%
 - 2) the expansion of organic farming to a share of 25% of agricultural land

Research questions: How can we allocate land optimally?

How do the targets influence each other?

|--|

OBJECTIVES OF LAND USE MUST BE CONSIDERED SIMULTANEOUSLY


- Optimal expansion of protected areas for nature conservation has been studied (Kukkala et al., 2016; Mueller et al., 2018; Mueller et al., 2020; Ricci et al., 2023)
- Cazzolla Gatti et al. (2023) studied the 10% strict protection target and found that not enough land is available of low population density and agricultural activity
- essential to also consider other objectives of land use (change) (Young et al., 2005)

METHODS AND DATA

- build a partial equilibrium model that optimizes land use decisions
- fulfills the 25% organic farming and 10% strict protected area targets under cost minimization
- uses ecoregions as ecological representation

https://www.eea.europa.eu/ds_resolveuid/88446B44-F911-4C6A-83DE-52D7504C38C0.

RESULTS

Spatial distribution of land

Economic impacts

Ecoregion representation

Home	Introduction	Methods	Results	Conclusion	Appendix
------	--------------	---------	---------	------------	----------

STRICTLY PROTECTED AREA UNEVENLY DISTRIBUTED

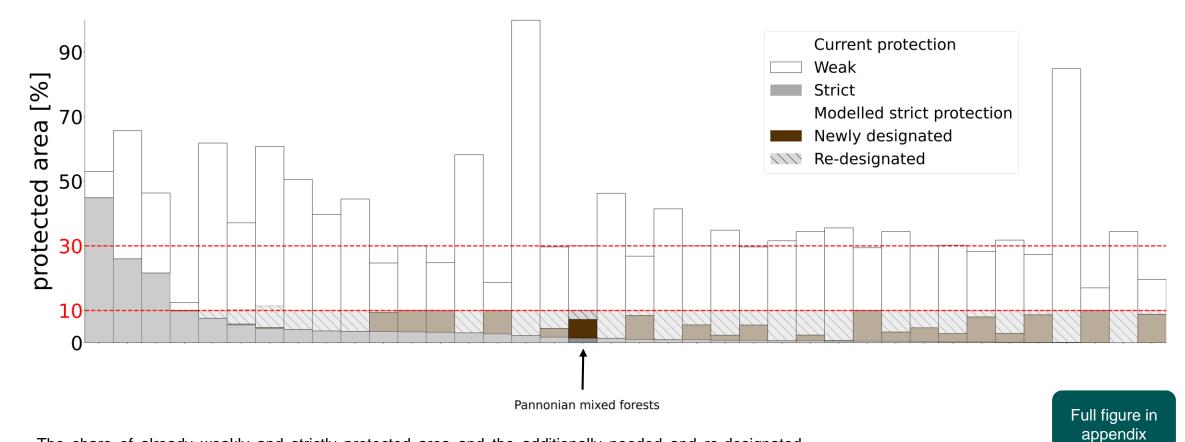
Full figure in

appendix

a) Area in 1000 ha <0.3 Ň (0.3-1.3] • (1.3-3.1] 3.1-7.5] • >7.5 500 km

The additionally designated strictly protected area in 1000 ha at the EU level.

	Home	Introduction	Methods	Results	Conclusion	Appendix	10
--	------	--------------	---------	---------	------------	----------	----



ECONOMIC RESULTS

HALF OF PROTECTED AREA CAN COME FROM RE-DESIGNATION

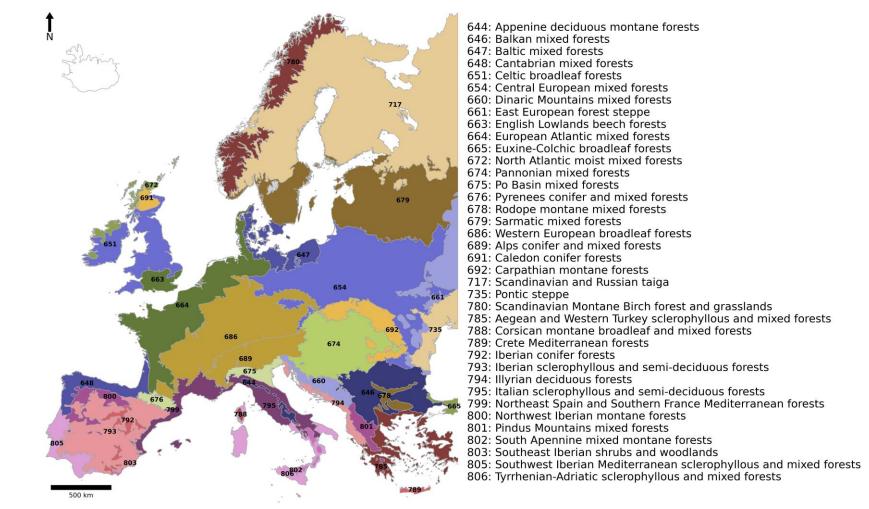
The share of already weakly and strictly protected area and the additionally needed and re-designated protected area for each ecoregion of the EU (scenarios at the national level).

CONCLUDING REMARKS

- Spatial designation of strictly protected areas should be taken with caution, (should consider biodiversity needs and connectivity)
- less than 1% of cropland needed for the strict protection target; both targets can be fulfilled without major conflicts over cropland use
- Commodity prices could increase by up to 50% for consumers
- Expansion and proper management of existing protected areas is crucial
- Supportive policy instruments needed to ensure acceptance and demand for organic products and reduce environmental leakage

Appendix

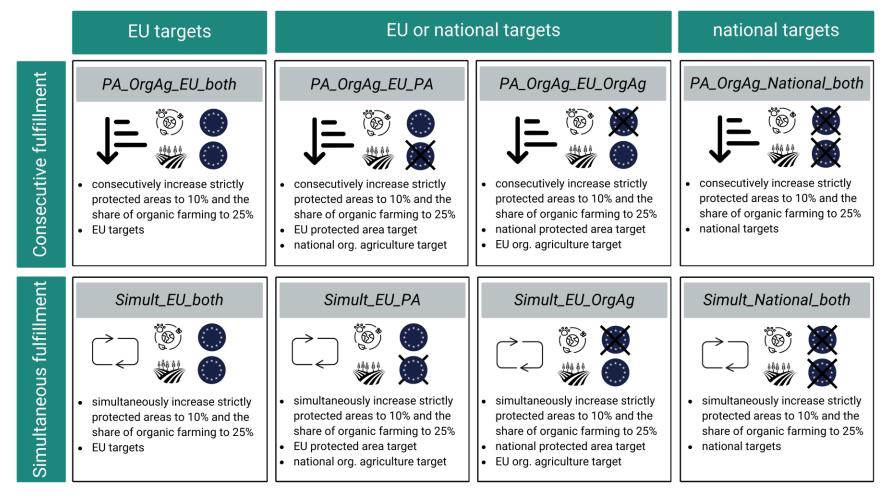
REFERENCES


- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikra- manayake, E., Hahn, N., Palminteri, S., Hedao, P., Noss, R., et al., 2017. An ecoregion-based approach to protecting half the terrestrial realm. Bio- Science 67, 534–545.
- Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O'Connell, C., Ray, D.K., West, P.C., et al., 2011. Solutions for a cultivated planet. *Nature* 478, 337–342.
- Paull, J. (2024). Organic Agriculture in Europe: EU Sets Goal of Growing Organic Farmland from 10% to 25% by 2030. European Journal of Agriculture and Food Sciences, 6(1), 26-31.
- Kukkala, A.S., Santangeli, A., Butchart, S., Maiorano, L., Ramirez, I., Burfield, I., Moilanen, A., 2016. Coverage of vertebrate species distributions by important bird and biodiversity areas and special protection areas in the European Union. *Biological Conservation* 202, 1–9.
- Mueller, A., Schneider, U.A., Jantke, K., 2018. Is large good enough? Evaluating and improving representation of ecoregions and habitat types in the European Union's protected area network Natura 2000. Biological Conservation 227, 292–300.
- Mueller, A., Schneider, U.A., Jantke, K., 2020. Evaluating and expanding the European Union's protected-area network toward potential post-2020 coverage targets.
 Conservation Biology 34, 654–665.
- Ricci, L., Di Musciano, M., Sabatini, F.M., Chiarucci, A., Zannini, P., Gatti, R.C., Beierkuhnlein, C., Walentowitz, A., Lawrence, A., Frattaroli, A.R., et al., 2023. A multitaxonomic assessment of Natura 2000 effectiveness across European biogeographic regions. *Conservation Biology*, e14212.
- Young, J., Watt, A., Nowicki, P., Alard, D., Clitherow, J., Henle, K., Johnson, R., Laczko, E., McCracken, D., Matouch, S., et al., 2005. Towards sustainable land use: identifying and managing the conflicts between human activities and biodiversity conservation in Europe. *Biodiversity & Conservation* 14, 1641–1661.

Home	Introduction	Methods	Results	Conclusion	Appendix	14
------	--------------	---------	---------	------------	----------	----

• • • • • • • • • • • • • • • •	0 0 0 0 0 0		
• • • • • • • • • • • • • • • • •	0 0 0 0 0 0		
• • • • • • • • • • • • • • • • •	0 0 0 0 0 0		
• • • • • • • • • • • • • • •	0 0 0 0 0 0		
• • • • • • • • • • • • • • • • • • •	0 0 0 0 0 0		
• • • • • • • • • • • • • • • • • •	0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • • • • • • • •			0 0 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • • • • • •	0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0
• • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • • •			
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
APPENDIX		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
• • • • • • • • • • • • • •			
• • • • • • • • • • • • • • • • • •		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
• • • • • • • • • • • • • • • • • • •		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
• • • • • • • • • • • • • • • • • • •		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
			0 0 0 0 0 0 0 0 0 0 0
		· · · · · · · · · · · · · · · · · · ·	
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
		· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0 0 0 0 0 0
Home	Introduction	Methods Results Conclusion	Appendix

ECOREGIONS


A map of the 38 ecoregions within the EU we consider in our anaylsis. Data taken from the Ecoregions 2017 Resolve map (Dinerstein et al., 2017).

Home	Introduction	Methods	Results	Conclusion	Appendix	16
------	--------------	---------	---------	------------	----------	----

17

SCENARIO ANALYSIS OF EU OR NATIONAL TARGETS

Overview of the six expansion scenarios that fulfill both targets of 10% strict protection and 25% organic agriculture either simultaneously or successively and either as EU-wide or national targets.

Home Introduction Methods Results Conclusion Appendix	idix
---	------

Base model

$$\max\left(\sum_{s,c}\int_{0}^{L_{s,c}}\alpha_{s,c}\cdot Q_{s,c}^{\frac{1}{\epsilon_{s,c}}}dQ_{s,c}-\sum_{s,c,m}c_{s,c,m}\cdot A_{s,c,m}\right)$$

s.t. $\sum_{c,m}A_{s,c,m}\leq a_{s}$ $\forall s$

$$\sum_{m} A_{s,c,m} = \sum_{t} m_{s,c,t} \cdot M_{s,t} \qquad \forall c, s$$

$$\sum_{m} A_{s,c,m} \leq \boldsymbol{\beta}_{c} \cdot \sum_{c,m} A_{s,c,m} \qquad \forall s, c$$

$$\sum_{c,m} y_{s,c,m} \cdot A_{s,c,m} = L_{s,c} \qquad \forall s,c$$

Organic farming expansion

$$A_{s,c,org} \ge r \cdot \sum_{m} A_{s,c,m} \qquad \forall s,c$$

Protected area expansion

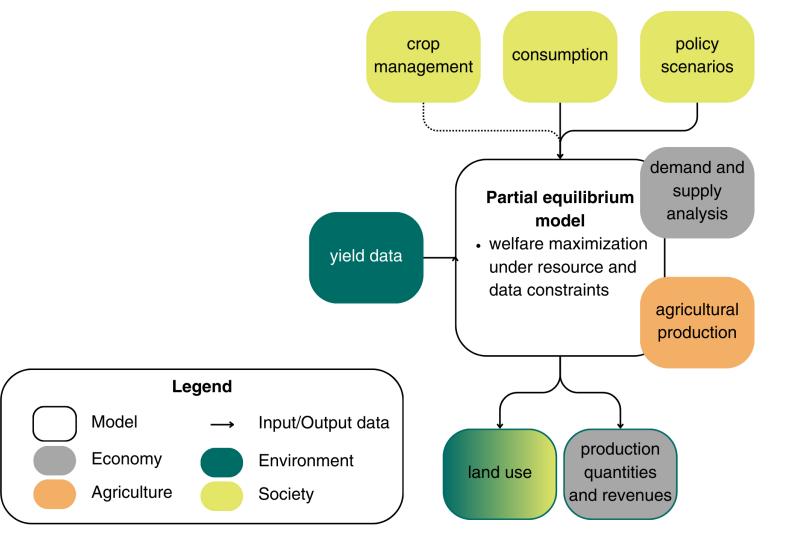
$$P_{s,e} \leq u_{s,e} \qquad \forall s, e$$

$$P_{s,e}^{new} + P_{s,e}^{re-designate} + p_e \geq (u_{s,e} + p_{s,e}) \cdot t_e \qquad \forall s, e$$

$$\sum_{s,e}^{new} P_{s,e}^{arable} + \sum_{c,m} A_{s,c,m} \leq a_s \qquad \forall e, c, m$$

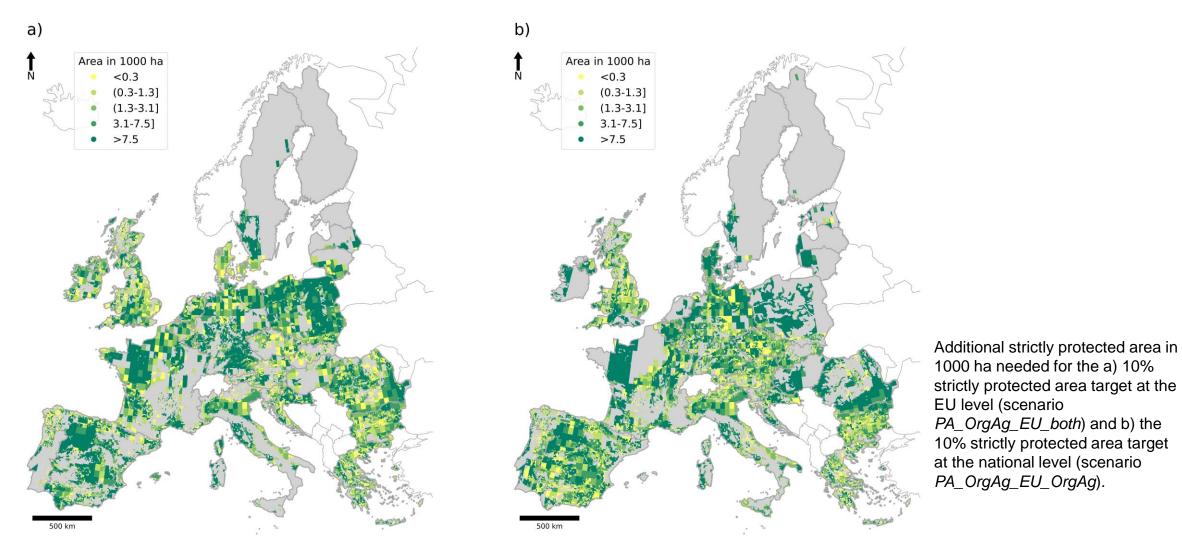
$$\sum_{s,e}^{nearable} P_{s,e}^{arable} - B \cdot \sum_{s} u_{s,e}^{arable} \leq 0 \qquad \forall e$$

$$\sum_{s}^{s} P_{s,e}^{natural} - B \cdot \sum_{s} u_{s,e}^{natural} \geq 0 \qquad \forall e$$



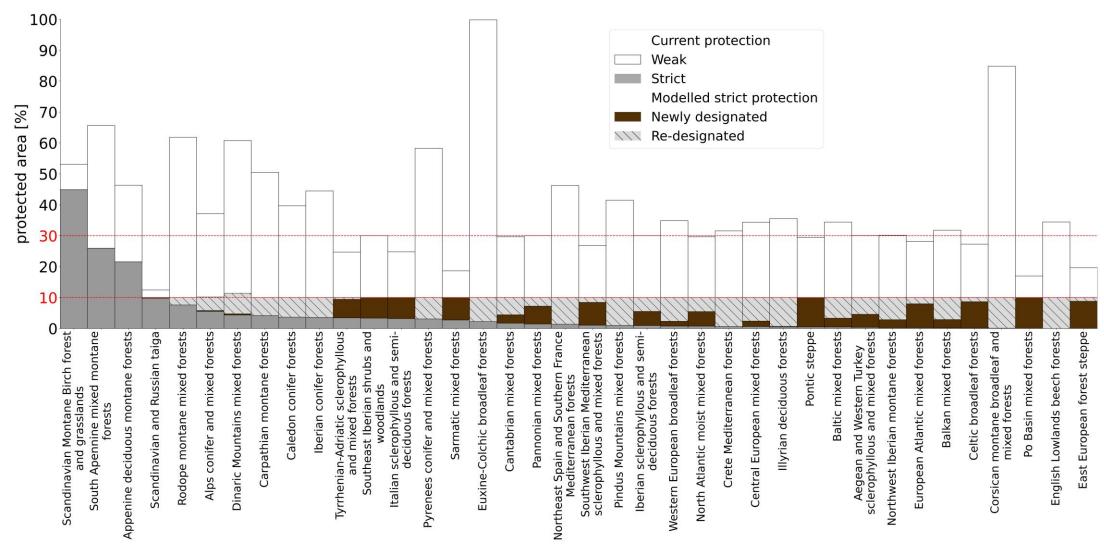
MODELING PARAMETERS

	Symbol	Domain	Unit	Description
Variable	Q	S,C	1000 tons	Production quantities
	А	s,c,m	1000 ha	Crop management area allocation
	М	s,t	-	Scalar indicating to what proportion each parameter is used in the linear combination
	L	S,C	1000 tons	Modeled production quantities
	Р	s,e	1000 ha	Protected area
	В	-	-	Binary variable to ensure natural land use before agricultural land use
Parameter	α	S,C		Scaling factor between quantity and price
	3	S,C		Price elasticity of demand
	С	s,c,m		Estimated cost parameter
	а	S		Observed cropland area
	m	s,c,t		Observed production quantities
	β	С		Maximum share of total cropland area in each HRU
	У	s,c,m		Exogenously simulated yield outputs
	r	-		Share of organic to total cropland
	u	s,e		Observed unprotected area
	t	е		Target share of strictly protected area
	р	е		Observed strictly protected area
Index	S			Country
	С			Crop product
	m			Crop management technology
	t			Year
	е			Ecoregion


SYSTEM OVERVIEW

Home	Introduction	Methods	Results	Conclusion	Appendix	20
------	--------------	---------	---------	------------	----------	----

NEWLY STRICTLY PROTECTED AREA



Appendix

21

HALF OF PROTECTED AREA CAN COME FROM RE-DESIGNATION

The share of already weakly and strictly protected area and the additionally needed and re-designated protected area for each ecoregion of the EU.

Appendix