

Non-reflecting cylindrical wave propagation in the ocean of changing depth

Ira Didenkulova Ekaterina Didenkulova, Efim Pelinovsky

Department of Mathematics, University of Oslo, Norway HSE University, Russia Institute of Applied Physics, Russia

EGU 2025

Influence of bathymetry: nonreflecting geometries

Other bottom geometries

Cylindrical wave propagation

Wave propagation above blue hole

Initial conditions in the centre of the basin:

$$\eta(\rho, 0) = A_0 sech^2(\sigma\tau(\rho)), \qquad u(\rho, 0) = 0$$

Evolution of the solitary pulse along the non-reflective bottom geometry

Evolution of the flow velocity along the non-reflective bottom geometry

EGU 2025

Ira Didenkulova

3

3

3

Reduction to the Klein-Gordon equation

$$\eta = A(\rho)G[t, \tau(\rho)] \qquad A(\rho), G[t, \tau(\rho)], \tau(\rho) \text{ are three unknown functions}$$

$$\frac{\partial^2 \eta}{\partial t^2} - \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho c^2(\rho) \frac{\partial \eta}{\partial \rho} \right] = 0 \qquad \text{Initial linearized shallow water eqs. can also be reduced to the Klein-Gordon eq.}$$

$$A \left[\frac{\partial^2 G}{\partial t^2} - c^2 \left(\frac{d\tau}{d\rho} \right)^2 \frac{\partial^2 G}{\partial \tau^2} \right] - \left[\frac{c^2}{\rho} \frac{d\tau}{d\rho} \frac{d(A\rho)}{d\rho} + \frac{d}{d\rho} \left(c^2 A \frac{d\tau}{d\rho} \right) \right] \frac{\partial G}{\partial \tau} - \frac{1}{\rho} \frac{d}{d\rho} \left[\rho c^2 \frac{dA}{d\rho} \right] G = 0 \qquad \text{Initial linearized shallow water eqs. can also be reduced to the Klein-Gordon eq.}$$

$$\frac{\partial^2 G}{\partial t^2} - c^2 \left(\frac{d\tau}{d\rho} \right)^2 \frac{\partial^2 G}{\partial \tau^2} \right] - \left[\frac{c^2}{\rho} \frac{d\tau}{d\rho} \frac{d(A\rho)}{d\rho} + \frac{d}{d\rho} \left(c^2 A \frac{d\tau}{d\rho} \right) \right] \frac{\partial G}{\partial \tau} - \frac{1}{\rho} \frac{d}{d\rho} \left[\rho c^2 \frac{dA}{d\rho} \right] G = 0 \qquad \text{Initial linearized shallow water eqs.}$$

$$c^{2} \left(\frac{d\tau}{d\rho}\right)^{2} = 1$$
$$\frac{c^{2}}{\rho} \frac{d\tau}{d\rho} \frac{d(A\rho)}{d\rho} + \frac{d}{d\rho} \left(c^{2}A \frac{d\tau}{d\rho}\right) = 0$$
$$\frac{d}{d\rho} \left[\rho c^{2} \frac{dA}{d\rho}\right] = 0$$

$$A = \frac{-1}{\left(\frac{3D}{2}\rho^2 + 3E\right)^{1/3}}$$
$$c^2 = gh(\rho) = \frac{B}{D\rho^2} \left(\frac{3D}{2}\rho^2 + 3E\right)^{\frac{4}{3}}$$
$$\tau = \frac{1}{\sqrt{DB}} \left(\frac{3D}{2}\rho^2 + 3E\right)^{1/3}$$

EGU 2025

Travelling wave solutions with variable amplitude

Bottom geometry $h(\rho)$ resembles an underwater volcano:

Wave propagation above underwater volcano

$$\eta = \frac{A(\rho)}{2} \operatorname{sech}^2\left(\sigma(t - \tau(\rho))\right) - \frac{A(\rho)}{2} \operatorname{sech}^2\left(\sigma(t + \tau(\rho))\right)$$

$$u = -\frac{g}{2\sigma}\frac{dA}{d\rho}\Big[tanh\left(\sigma\big(t-\tau(\rho)\big)\right) - tanh\left(\sigma\big(t+\tau(\rho)\big)\right) \Big] + \frac{gA}{2}\frac{d\tau}{d\rho}\Big[sech^2\left(\sigma\big(t-\tau(\rho)\big)\right) + sech^2\left(\sigma\big(t+\tau(\rho)\big)\right) \Big]$$

EGU 2025

Other non-reflected bottom geometries

EGU 2025

-8

Ira Didenkulova

 ρ/\hat{L}

Conclusion

- Several new non-reflective bottom geometries allowing for cylindrical wave propagation are found
- Geometries represent a blue hole and an underwater volcano
- The results can be used for model benchmarking

Didenkulova et al. Non-reflected cylindrical propagation of tsunami waves in the ocean of changing depth. Submitted to Ocean Engineering (2025)

Thank you for your attention!

