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Mercury's magnetosphere is more dynamic than Earth's due to its proximity to the Sun, and it is subject to a lower Mach number solar wind. Regarding the solar wind interaction with Mercury, we are interested in the configurations of Mercury’s magnetosphere and the energy transport under various solar wind
conditions. First, this study examines the potential impact of low Mach number solar wind on Mercury's bow shock and the resulting effects on the magnetosphere. To analyze the variability of Mercury's bow shock in response to solar wind properties, this study combines observations by the Helios data with
theoretical solutions and MHD simulations. The results show that when Mercury encounters solar wind with an extremely low Mach number, its bow shock is expected to become more flattened, further from the planet, and may even disappear, which means the interactions between the solar wind and
Mercury’s magnetosphere would be anomalies. We also found that Mercury's bow shock would become a concave-upward slow-mode shock. Our other focus is on the Kelvin-Helmholtz instability (KHI) at Mercury’s magnetopause, which is crucial in the energy and momentum coupling process between the solar
wind and planetary magnetospheres. To investigate this phenomenon, we have conducted MHD simulations using a specific set of boundary conditions and plasma parameters derived from hybrid simulations of the first encounter of the MESSENGER spacecraft with Mercury in 2008. We discovered that a heavily
mass-loaded Mercury's magnetosphere allows KHI waves to extract energy and momentum more effectively from the solar wind and transport them into the inner Mercury’s magnetosphere when the nonlinear fast-mode plane waves are generated by the fast-mode waves emitted from the KHI surface waves.

Kelvin-Helmholtz Instability at Mercury
Energy and Momentum Transport 
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KHI Evolution for

• The KHI with a heavily-loaded magnetosphere can efficiently transport

momentum and energy away from the magnetopause in the presence of the

fast-mode plane waves.

• We estimate that the KHI at Mercury's magnetopause is a significant source of

energy storage within the magnetosphere.
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MHD Energy Equation

MHD Momentum Equation For Perturbations
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Initial Conditions
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, μ: viscosity

Sxy is also called the tangential stress (viscous shear stress)

ρVxVy : Reynold stress, −
BxBy

μ0
: Maxwell stress

KHI Evolutions Under Two Scenarios
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Helios 1/2  orbits:

Aphelion:  0.29AU

Perihelion:  1.0AU

(cover Mercury’s orbit)

Mission durations:

Helios 1: 1975/01~1985/02

Helios 2: 1976/07~1979/12

(cover 2/3 solar cycle 21)

Disappearance of Mercury’s Bow Shock

Data Exploration: Helios Mission

(Source of this figure is 

http://solarsystem.nasa.gov/multimedia/display.cfm?IM_ID=10623)

2D MHD Simulation Results
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Theoretical Model and MHD Simulation
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Bow shock cannot be generated by the fast-mode waves when MF < 1.0 :   

Extremely Low Fast-Mode Mach Number is defined as MF ≤ 1.5
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Schematic variety of 
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• Anomalies in the interaction between the solar wind 

and the magnetosphere occur without a bow shock.

• Do the ICMEs dominate the occurrence of the 

extremely low-MF interval?
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Case AH

Case AW

9.3×10−2 9.1×10−2 4.2×10−3 9.4 ~10−2 / / / / /

8.5×10−2 7.1×10−2 6.9×10−4 6.2 ~10−3 / / / / /

Case BH

Case BW

7.6×10−2 8.6×10−2 6.1×10−3 6.4 ~10−2 2.0×10−2 1.7×10−2 1.1×10−3 1.5 ~10−2

8.8×10−2 7.6×10−2 2.6×10−4 5.8 ~10−3 1.2×10−2 7.8×10−4 7.0×10−7 0.5 ~10−6

Case CH

Case CW

5.8×10−2 6.3×10−2 6.2×10−3 5.6 ~10−2 1.6×10−2 1.5×10−2 2.0×10−3 1.8 ~10−2

4.5×10−2 5.1×10−2 3.8×10−3 5.3 ~10−3 1.4×10−2 7.8×10−4 6.5×10−6 0.9 ~10−5

Case DH

Case DW

1.1×10−2 3.1×10−2 4.3×10−3 3.7 ~10−1 1.4×10−2 1.3×10−2 3.8×10−3 2.8 ~10−2

2.3×10−2 1.8×10−2 1.8×10−3 3.5 ~10−2 6.3×10−3 3.6×10−4 5.5×10−6 0.7 ~10−5

Esw0: initial solar wind energy density

𝐃sw0: initial solar wind dynamic pressure
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