Improving Wildfire Prevention: Combining FWI Components, Historical Burn Probabilities, and Multi-Sensor Satellite Data

for Better Early Warning Systems in Los Angeles, CA
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Wildfires are a growing threat in fire-prone regions like Southern California, as In this study, we investin- » A key contribution of this study lies in addressing the limitations of expert-
seen in the severe 2024/25 fire season. Rapid climate shifts, prolonged K'/:Zi‘;;i‘r?z:(:eicczrldasnzfs";’lgfi‘trszata gated five wildfire events in Selected Study Locations, by Fire Event, by Year driven weighting in multi-criteria decision analysis at fine spatial scales.
drought, and expanding urban-wildland boundaries are intensifying both the e California, selected for their _ ; - . L.
. g . . . * Vegetation indices Planned Developed . . Poriods _ Event > Traditional Analytic Hierarchy Process (AHP) applications rely on expert
frequency and severity of wildfire events. Despite advances in modelling and timing and geographical Start "Before" period Event - 120d N FireDD : : . . . : .
L , , , End "Before” period Event - 30d judgment, which becomes impractical or unreliable when applied to localized
monitoring, current early warning systems often lack the spatial granularity and relevance to the most - Event - 904 : . . e
: . : . . : / Event Start units, such as 10X10 km cells in this study, where no individual expert can
dynamic responsiveness needed for localised risk assessment. e Data alignment recent wildfires in the Start "Event Duration” period - . : e
_ _ End "Event Duration” period /| Barstayy feasibly possess site-specific knowledge.
_ _ _ _ _ . . e Construction of transformation greater Los Angeles area.
This study introduces an innovative, data-driven approach that integrates Fire functions _ |vent+0d : : : : :
] : _ : B 15 » To overcome this, we propose a novel integration of the Shannon Diversity
Weather Index (FWI) components, historical burn probabilities, and multi- _ _ . 18w . . e .
_ , Each fire region, measuring Vietdvll Index (SDI) as a proxy for localised expertise. By quantifying ecological
sensor satellite observations (e.g., Landsat 8-9, ERA5, MODIS) and other data. o= h : sh Ji : » i oful data-dr
O A — 10x10 km, is derived from | smce o Eld eterogeneity, annon diversity provides a meaningful, data-driven
By automating risk weighting using Shannon entropy within an Analytic e Analytic Hierarchy Process (AHP) CAL FIRE incident reports. Tivaleyr I forest  Bridge Fire surrogate for expert input, enabling context-sensitive weighting without
Hierarchy Process (AHP), our method reduces subjective bias and adapts to « Respecting local conditions Furthermore, a second | O T 7S requiring subjective intervention.
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Iocal.condltlons. The goal is t.o suppqrt the development F’f a real-time early location within the same LA S N B : NPT 7 Tree W - veor > The input for the SDI is a set of fuzzy functions to represent gradual
warning dashbqard for proactive W|IFIf|re risk management in, for example, the - (leeteling of fre wllneralsi fire zone.Was in.cluded to LongBeac'hJTZ"'.‘-J“’l'tw e = troansitions in_environmental criteria: this anroach creates a scalablo,
85 (RS (RN @ CnClr Enell EREE (e PRTEY VEEAEREC) ENE e es * Validation across fire zones Powered by: enable blind testing of our L = reproducible, and objective framework for environmental decision support.
Initially, we explored cross-validating MODIS and ERAS5 Land Surface > [BEaITE, [Pe-GUETE Ee! [PeSi-CUEt methodology. (€)Ongnstrectrap contrbutors CNSCN fMuriea T | 75 km
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Limitations & Future Work

Temperature (LST) trends. However, significant microclimatic variability across
landscapes revealed limitations in applying a single validation model region-

wide. This insight led to a refined focus on local-scale analysis and automated, Local Conditions Temporal and Spatlal Resolution of Risk Sparse Historical Fire Records:
data-driven prioritisation to better capture wildfire risk in heterogeneous In some of the 10X 10km regions, historical burn data is limited or absent,
environments. In this analysis, NDVI, NDWI, and MSAVI2 — : A . leading to low sample sizes and potential biases in risk estimation.
indices were employed to assess Nle Byl =t Time-related Rapid Updates (e.g., -
Background (Local Weather) Historical Weather vegetation condition and moisture S BT o en;zpf;géaphgad o meteorological parameters) Land Surface Temperature (LST) Cross-Validation:
. e : : = I influencing fire spr . . :

| h | £ climati - dynamics across wildfire-impacted areas. NDVI‘— — : mifmc.imﬁte MODIS vs ERA5 LST cross-validation was not yet implemented; future work will
e de.v.a uat.e ! 'Iedf' ro ed © C |mat|; ) 1 e~ | NDVI provided a robust measure of T e " " Moderate Updates (e.g., explore this for thermal anomaly verification.
conditions in wildfire dynamics an N b i A vegetation greenness for evaluating burn i = remote sensed imagery) O : : .
recovery, we extracted mont.hly 8 el B FEEYER EIEEEEs, W § > Future Directions:
preuglt?jtmn, :empe\r/?/tu[j’uand Wzmld o B i NDWI offered insights into vegetation NDWI 5, /(8? Infrequent Updates (e.g., 3; » Explore regional proxies for fire history
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vxt)hich orovides long-term climate S | A A water content and surface moisture — e 253 . ©) topographical information) § > Integrate synthetic burn probability models
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o critical in fire-prone arid environments. . == e e = $8 g ) . . = > Conduct validation of early warning triggers using past fire events
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resolution of 30 arc-seconds. E | ” low-vegetation - exposed-soil MSA;/I“Z'-\ g % o~ I I S =] (km); regional scale g » The results are preliminary, and the dynamic risk layer can be enhanced
For everdy mgnth, dplxel values wlfre ‘ conditions common after fires, where it B % . . . 3 \SNPIT: dov;r;(sg;lle.d;.empera’.culze, preC|p|tat|.c|Jnk;Ianochl/\llqmcjlc.data ]EO creati T_NI’
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median, minimum, maximum, and ST T e R T MODIS 8-day average Lland Surface - anthropogenic factors that create Data Sources

P . _ MODIS conditions conducive to fire : : : .
standard deviation. Temperature (LST) is the fourth dynamic &4 - High Spatial Resolution (m); | | | -
T e ——r—— - pace local scale All input data layers (n = 21), including raw and composite indices, were sourced

Local Fire Weather from the publicly available Google Earth Engine Data Catalogue. Detailed

descriptions and links to each dataset are provided in the supplementary
material and are available upon request.

conditions.

The Fire Weather Index (FWI) shows substantial daily variation in fire
conditions across study areas, emphasising the dynamic nature of wildfire
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