Al-driven analysis of SEM images of thin layers of volcanic rocks: a test with Segment Anything for Microscopy
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INTRODUCTION

The analysis of light and SEM microscopy images of thin rock sections, while informative, is currently dependent on a
significant investment of human time, which implies a limited number of processed images, thereby compromising
conclusions at larger scales.

— MIETHODS

Image Segmentation:

> We utilize the Segment Anything Model (SAM)"?, as implemented in Segment Anything for Microscopy
(micro-SAM)™“, to conduct image segmentation.

In recent years, advances in artificial intelligence have taken image analysis to a new level by automating human

. . . * This involves testing both the original SAM models and fine-tuned variants.
interpretation, allowing a greater number of samples to be processed.

* A grid search was performed to find the best values of the essential parameters of SAM.
Our study aims to perform automatic compositional analysis of micro-petrological features across many

SEM images of thin rock sections for the robust characterization of volcanic deposits. Linear Discriminant Analysis:

* LDA to assess the consistency of our taxonomy with the elemental composition obtained from EDS

STEPS: mappings.

Automatic Image Segmentation: Segment SEM images to clearly delineate distinct "objects" within the samples.

_ _ _ _ o | * The LDA was applied to our training set of SEM features, overlaid on the EDS mappings.
Object Identification: Machine-learning (ML) to identify these "objects" based on quantitative morphological data

and elemental composition mappings derived from Energy Dispersive Spectroscopy (EDS).

Software: napari’, micro-SAM”*, R packages (terra’, ggplot2’, MASS®).

In this poster we present results on image segmentation and Linear Discriminant Analysis (LDA) Hardware: Dell Precision 3660, Intel 19, 62.5 GiB RAM, NVIDIA RTX A4000 GPU.

— |[IAGE SEGMENTATION
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° Three backscattered SEM images of thin sections of two volcanic rocks that correspond to pyroclastic density DI17 and DI18.

current deposits of the Fumarole Bay Formation of Deception Island (Antarctica).

Selected results resulting from SAM models vit_b and vit_h (pred_iou th=0.7, stab_score th=0.9 and
box _nms_th=0.1), and automatic instance segmentations resulting from micro-sam fine-tuning with our own
Images and training sets.

e Fragments consist of a glassy groundmass bearing plagioclase, olivine and pyroxene phenocrysts and
microcrysts, and abundant vesicles, however, the clasts are highly altered, with some even lacking sideromelane.

o A collection of objects (e.g., vesicles, minerals) was interactively outlined in the SEM images to serve as a training
and validation set.
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Al Ca Fe

RGB composite of the mapping values of Al (red), Ca (green) and Fe
(blue), with the contours of our training sets overlaid. Mean values of
Al-Ca-Fe for each training polygon overlaid on the SEM image.
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—— PRELIMINARY FINDINGS
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Element Mappings from EDS-SEM
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\/ Fine-tuning in microSAM increased accuracy (CD) in DI17 images, but added few new objects. DI18A did not improve; further
tests with more images and parameters are ongoing.

\/ The original SAM vit_h model, with grid-searched parameters, yielded a useful result with many polygons and with a high
(CD+0S)/(US+M) ratio. Subsequent ML classification can be applied to both well- and over-segmented objects.

\/ LDA reveals a general alignment between our initial taxonomy and element composition, highlighting some necessary
modifications to ensure class uniformity across both morphological and chemical data spaces. This consistency is a
sine-qua-non condition for the effective identification by ML methods.

\/ Deep-learning techniques heavily rely on large training datasets. The creation of such datasets can be significantly
enhanced through collaborative projects between institutions, potentially utilizing federated learning strategies.
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