

Tailoring Land Use, Land-Use Change, and Forestry (LULUCF) Impacts for Stakeholder-Centric Climate Policy

Julia Pongratz, Suqi Guo, Felix Havermann, Michael Windisch, Steven De Hertog, Amali Amali, Fei Luo, Iris Manola, Wim Thiery, Quentin Lejeune, and Carl-Friedrich Schleussner

EGU 2025, Vienna, 2025/04/28

Federal Ministry of Education and Research

2021

Current Climate Change Reports https://doi.org/10.1007/s40641-021-00178-y

VEGETATION AND CLIMATE CHANGE (M CLAUSSEN, SECTION EDITOR)

Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics

Julia Pongratz^{1,2} · Clemens Schwingshackl¹ · Selma Bultan¹ · Wolfgang Obermeier¹ · Felix Havermann¹ · Suqi Guo¹

2021

Current Climate Change Reports https://doi.org/10.1007/s40641-021-00178-y

VEGETATION AND CLIMATE CHANGE (M CLAUSSEN, SECTION EDITOR)

Land Use Effects on Climate: Current State, Recent Progress, and Emerging Topics

Julia Pongratz^{1,2} · Clemens Schwingshackl¹ · Selma Bultan¹ · Wolfgang Obermeier¹ · Felix Havermann¹ · Suqi Guo¹

In press

Biogeochemical versus biogeophysical temperature effects of historical land-use change in CMIP6

Amali A. Amali¹, Clemens Schwingshackl¹, Akihiko Ito², Alina Barbu³, Christine Delire³, Daniele Peano⁴, David M. Lawrence⁵, David Wårlind⁶, Eddy Robertson⁷, Edouard L. Davin^{8,9,10}, Elena Shevliakova¹¹, Ian N. Harman¹², Nicolas Vuichard¹³, Paul A. Miller⁶, Peter J. Lawrence⁵, Tilo Ziehn¹⁴, Tomohiro Hajima¹⁵, Victor Brovkin^{16,17}, Yanwu Zhang¹⁸, Vivek K. Arora¹⁹, and Julia Pongratz^{1,16}

Climate extremes are influenced by LULUCF

2010

nature

geoscience

ARTICLES PUBLISHED ONLINE: 5 SEPTEMBER 2010 | DOI: 10.1038/NGE0950

Contrasting response of European forest and grassland energy exchange to heatwaves

Adriaan J. Teuling^{1,2}*, Sonia I. Seneviratne¹*, Reto Stöckli³, Markus Reichstein⁴, Eddy Moors⁵, Philippe Ciais⁶, Sebastiaan Luyssaert⁶, Bart van den Hurk⁷, Christof Ammann⁸, Christian Bernhofer⁹, Ebba Dellwik¹⁰, Damiano Gianelle¹¹, Bert Gielen¹², Thomas Grünwald⁹, Katja Klumpp¹³, Leonardo Montagnani^{14,15}, Christine Moureaux¹⁶, Matteo Sottocornola¹¹ and Georg Wohlfahrt¹⁷

Climate extremes are influenced by LULUCF

2010

nature geoscience

ARTICLES

Contrasting response of European forest and grassland energy exchange to heatwaves

Adriaan J. Teuling^{1,2}*, Sonia I. Seneviratne¹*, Reto Stöckli³, Markus Reichstein⁴, Eddy Moors⁵, Philippe Ciais⁶, Sebastiaan Luyssaert⁶, Bart van den Hurk⁷, Christof Ammann⁸, Christian Bernhofer⁹, Ebba Dellwik¹⁰, Damiano Gianelle¹¹, Bert Gielen¹², Thomas Grünwald⁹, Katja Klumpp¹³, Leonardo Montagnani^{14,15}, Christine Moureaux¹⁶, Matteo Sottocornola¹¹ and Georg Wohlfahrt¹⁷

2017

@AGUPUBLICATIONS

Journal of Geophysical Research: Atmospheres

Present-day irrigation mitigates heat extremes

Wim Thiery^{1,2}, Edouard L. Davin¹, David M. Lawrence³, Annette L. Hirsch¹, Mathias Hauser¹, and Sonia I. Seneviratne¹

Accounting for LULUCF impacts requires care

Pongratz et al., Curr. Clim. Change Rev., 2021

Models had – wrongly! – been thought to be wrong

temperate regions

Models: cooling in boreal, but also

Modeled temperature change (K) by global deforestation

Observed temperature change due to deforestation

2

-0.5 -0.1 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

-6 -5 -4 -3 -2 -1 -0.5 0.5

Observations: cooling in boreal, **warming** in temperate regions

Julia Pongratz: Assessing LULUCF impacts for climate policy

* (as shown by Winckler et al., JGR-Atmos., 2019)

-30

-2.0 -1.5 -1.0

Models had – wrongly! – been thought to be wrong

Models had – wrongly! – been thought to be wrong

* (as shown by Winckler et al., *JGR-Atmos.*, 2019)

LULUCF acts on various scales (local vs non-local)
... via two pathways (biogeophysical vs biogeochemical)
Confusion in the literature when to assess what

Create a framework that includes all LULUCF effects
Fill it with data
Apply it in a *targeted way* to a specific question

Systematizing scales and pathways

Guo et al., in prep.

Systematizing scales and pathways

Guo et al., in prep.

Filling in gaps in the framework

Remote carbon cycle changes are overlooked impacts of land-cover and land management changes

Suqi Guo¹, Felix Havermann¹, Steven J. De Hertog^{2,3}, Fei Luo^{4,5,6}, Iris Manola⁴, Thomas Raddatz⁷, Hongmei Li^{7,8,9}, Wim Thiery², Quentin Lejeune¹⁰, Carl-Friedrich Schleussner^{10,11,12}, David Wårlind¹³, Lars Nieradzik¹³, Julia Pongratz^{1,7}

(Examplary results from MPI Earth System Model)

Filling the framework with data

- Any data (in-situ, remote sensing, ...) can be used, but only modeling will provide non-local effects
- LAMACLIMA provided estimates of all (local and non-local, biogeophysical and biogeochemical) effects for various land management changes

EGUsphere Preprint repository

Remote carbon cycle changes are overlooked impacts of land-cover and land management changes

Suqi Guo¹, Felix Havermann¹, Steven J. De Hertog^{2,3}, Fei Luo^{4,5,6}, Iris Manola⁴, Thomas Raddatz⁷, Hongmei Li^{7,8,9}, Wim Thiery², Quentin Lejeune¹⁰, Carl-Friedrich Schleussner^{10,11,12}, David Wårlind¹³, Lars Nieradzik¹³, Julia Pongratz^{1,7}

Earth Syst. Dynam., 13, 1305–1350, 2022 https://doi.org/10.5194/esd-13-1305-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The biogeophysical effects of idealized land cover and land management changes in Earth system models

Steven J. De Hertog¹, Felix Havermann², Inne Vanderkelen¹, Suqi Guo², Fei Luo^{3,4}, Iris Manola³, Dim Coumou^{3,4}, Edouard L. Davin^{5,6}, Gregory Duveiller⁷, Quentin Lejeune⁸, Julia Pongratz^{2,9}, Carl-Friedrich Schleussner⁸, Sonia I. Seneviratne⁶, and Wim Thiery¹

Earth System

Approach for separating local and non-local effects

Method: Winckler, Reick, and Pongratz, J. Clim., 2017

Simulated

Approach for separating local and non-local effects

Approach for separating local and non-local effects

Guo et al., in prep.

Systematization of all LULUCF impacts

Guo et al., in prep.

Systematization of all LULUCF impacts

Decision tree to identify perspective

Guo et al., in prep.

Systematization of all LULUCF impacts

Decision tree to identify perspective

Different scales (global, country, field scale)

Guo et al., in prep.

Systematization of all LULUCF impacts

Decision tree to identify perspective

Different scales (global, country, field scale)

Various outcomes of which impacts need to be considered

Guo et al., in prep.

Two examples:

Conclusion on assessing the LULUCF impacts for climate policies

- Current political focus has been mostly on greenhouse gas fluxes which ignores partly massive biogeophysical effects on climate mean and extremes
- The complexity across pathways and scales (local vs non-local) is high for LULUCF
- LAMACLIMA provided a systematic framework to address the needs of a large variety of questions ("stakeholder perspectives")
- Outlook:
 - Incorporate data on more LULUCF practices, under more climate scenarios
 - Iterate with stakeholders and incorporate their variables of concern (such as specific climate extremes)

