Supplementary Document: EGU 2025 Poster Presentation

Title: Human Thermal Indices and the Risk of Abrupt Population Disruption

Authors: Saket Dubey and Shrikant Lahase, Indian Institute of Technology Bhubaneswar

1. Introduction

This research investigates the future evolution of heat stress patterns using data from 37 climate models. The core objective is to identify potential "abrupt disruptions" in thermal conditions — rapid changes in the frequency, intensity, or duration of heatwaves — that could pose significant threats to populations. To provide a regionally specific analysis, the study area is divided into zones based on the Köppen-Geiger climate classification system. This zoning allows for a more detailed assessment of the timing of potential disruptions for populations in different climatic regions. The study employs a comprehensive suite of thermal index parameters to capture various facets of heat stress. Ultimately, the project aims to pinpoint high-risk areas, enabling the development of targeted intervention strategies.

2. Objectives

The primary objectives of this research are:

- To generate global thermal indices for the period 1985-2100 using data from 38 General Circulation Models (GCMs).
- To determine the timeline for abrupt heat stress disruptions for populations, referencing previously experienced extreme climate events as a baseline.
- To identify hotspots of future susceptible heat-stressed areas.

3. Materials and Methods

The research utilizes temperature, relative humidity, wind speed, and vapor pressure data at a coarse resolution (1° x 0.25°) to calculate a range of thermal indices. These indices include:

- Heat Index and Humidex
- Apparent Temperature (indoors and outdoors) and Discomfort Index
- Effective and Net Effective Temperature, Discomfort and Modified Discomfort Index
- Surface Air Temperature, Modified Discomfort Index and Net Effective Temperature
- Wind Chill Temperature, Simplified Wet-bulb Temperature and Wet-bulb Temperature

The study incorporates historical extremes of all indices using data from 37 General Circulation Models (GCMs). The methodology involves calculating thermal indices for both historical (1850-2015) and future (2015-2100) time periods. The timing of disruption is determined using the historical maximum values of all indices in conjunction with the Köppen-Geiger climate classification.

4. Results

The poster presents results focusing on apparent temperature (AT_Out) and discomfort index (DI) under different Shared Socioeconomic Pathways (SSPs). Key findings include:

- Global maps showing AT_Out and DI under SSPs 1-2.6, 2-4.5, and 5-8.5.
- Comparisons of temperature patterns between AT_Out and DI scenarios.
- Maps illustrating threshold exceedance for AT_In, evapotranspiration (ET), and surface air temperature (SAT) by 2100.
- Time series plots showing the percentage of global land area exceeding these thresholds.

5. Conclusions

The study yields several major conclusions:

- A substantial fraction of global land is projected to surpass critical thresholds for various thermal parameters by 2100.
- Higher emission scenarios exacerbate the severity and extent of threshold exceedance.
- Lower latitude regions are identified as particularly vulnerable to increased heat stress.
- Even with moderate emission mitigation, some level of impact is unavoidable.
- Uncertainty in projections increases over time, especially under high emission scenarios.

6. References

- 1. Beck, H. E. Zimmermann, N. E., McVicat, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific data, 5(1), 1-12
- 2. Li, X., Lao, M., Zhao, Y., Zhang, H., Ge, E, Huang, Z. & Tang, Y. (2023). A daily high-resolution (1 km) human thermal index collection over the North China Plain from 2003 to 2020. Scientific Data, 10(1), 634.

7. Contact Information

Dr. Saket Dubey

Assistant Professor, Indian Institute of Technology Bhubaneswar

Former Postdoctoral Researcher, University of Dayton.

PhD, Indian Institute of Technology Indore

Email: [email address removed]

Mob: +91 9741171476

Sources and related content