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→ Indication for irrigation systems as a 

source for PPSU [5, 7, 8, 10]

✓ PPSU is commonly used in irrigation systems (e.g., fittings, 

connectors and pipes) 

✓ Regular use of irrigation systems in the study region was confirmed 

by local farmers

✓ River water pumping carrying fine sediments potentially causes 

abrasion and of PPSU

✓ Due to low ductility, PPSU fractures easily under stress

✓ Crystallographic bond failures promote micro-fragment release 

(embrittlement)

✓ Fine PPSU particles were found in irrigated field soils

✓ Findings suggest links between agricultural irrigation and 

microplastic pollution
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Background
▪ Global microplastic (MP) contamination in agricultural soils has been 

documented [4, 11, 13]

▪ Agricultural intensification increases the risk of microplastic 

    pollution [6, 14, 15]

▪ Potential for aeolian microplastic mobilisation, transport and 

deposition from arable soils [1, 3, 12]

▪ Risk of wind-driven microplastic contamination on a local and 

regional scale [2]

▪ In-situ studies on the aeolian dynamics of microplastic on arable 

soils have so far been scarcely conducted

Research aims
▪ Assessing microplastic variety in abundance (including shape and 

type) in soils and in wind tunnel-driven erosions on fallow steppe

▪ Studying the potential flux of microplastic and enrichment ratio (ER) 

for both study sites

▪ Exploring links between microplastic detections and potential 

sources

Conclusion
▪ Detection of microplastic (maximum size 150 µm) in both wind 

tunnel-driven erosion and soil

▪ Variation in microplastic abundance, shape and polymer type 

related to agricultural management

▪ PPSU contamination potentially originate from irrigation systems

▪ Fragments were the dominant microplastic shape

▪ Microplastics were more abundant in wind-driven erosion 

compared to soil

▪ The procedure has been proven to be adequate for assessing 

microplastic erosion in semi-arid steppe

Next steps
➢ Further studies including varying wind speeds and diverse surfaces 

are needed to assess potential microplastic mobilisation

➢ Additional soil samples are needed to spatially scale microplastic 
abundance

▪ Fertile loess soils heavily prone to wind erosion due to flat 

topography, semi-arid climate and agricultural management

Wind tunnel (push-type) [9]

< 250 µm

Laboratory analytics

25 µm
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Results
Table 1: Summary of wind tunnel–mobilised sediment and detected microplastics in Shortandy and Zhelezinka, including polymer shapes, types and percentage
distribution. Abbreviations: PP – polypropylene; PPSU – polyphenylsulfone; PE – polyethylene; PA – polyamide; PMMA – polymethylmethacrylate.

Sediment (g) Microplastic (g) Fragments (g) Fibres (g) PP (g) PPSU (g) PE (g) PA (g) PMMA (g)

∑ Shortandy (SH) 190.77 0.00041 0.00015 0.00026 0 0 0 0.00041 0

∑ Zhelezinka (ZH) 317.74 0.00433 0.00420 0.00013 0.00076 0.00327 0.00016 0 0.00013

∑ TotalSH + ZH 508.51 0.00474 0.00435 0.00039 0.00076 0.00327 0.00016 0.00041 0.00013

Percentage 0.00093 % 92 % 8 % 16 % 69 % 3 % 9 % 3 %

Enrichment ratio (ER) = Microplasticwind-driven / Microplasticsoil = 1.63

Mean Raman-measured filter 

membrane

Mean Raman-recorded filter 

membrane

Total filter membrane area

1. Extrapolation to filter membrane and total wind-mobilisied soil 

2. Conversion of microplastic items to mass (g) based on spherical 

    and cylindrical shapes 

3. Microplastic results were normalised to square meter (x 3.33) 

    and minute
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Microplastic detections per study sites and soil Microplastic fragments (FRAG) and fibres (FBR) per polymer type and study site

Experiments per study sites Polymer type (above) and 

shapes (below) 
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▪ Test duration: 15 min

▪ Average wind speed 14 m/s (extreme conditions)

▪ Logarithmic wind profile up to 0.4 m height

▪ Wind direction
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