

Introduction

Snowball Earth

Current Earth

Runaway Greenhouse

How does planetary albedos change between these limits? Here we use **spectrally-resolved** reasoning to propose a simple model for the albedo of an Earth-like atmosphere, and validate it using line-by-line calculations.

Core Approach

Assume the atmosphere is a 1-D column in RCE, which consists of 1 bar N₂ and saturated H₂O

For every single wavenumber, we suggest that:

- cloud-free atmosphere is approximately either perfectly absorbing (due to water vapor absorption) or perfectly scattering (due to Rayleigh scattering) in the shortwave spectrum
- clouds are approximately perfect scatterers throughout the shortwave

A Simple Spectral Model for Earth's Albedo Zhiping Zhang¹ (zhangzhip@student.ethz.ch), Daniel D.B. Koll², Timothy W. Cronin³ ¹Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland ²Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA

 ω_0 : Single Scattering Albedo

Planetary albedo is the **spectral average** of the monochromatic albedo

Single layer atmosphere (Cle

 τ_{air} τ_{air}

 μ 1/2

Purely Absorbing
$$(\omega_0 \approx 0)$$

 $\alpha_{\nu} = \alpha_{abs} = \alpha_{s}e$

Purely Scattering

Visible

$\alpha_{\nu} = \alpha_{sca} = 1 - (1 + 1)$ **Boundary Condition at TOA :** Direct solar radiation is μS , no downward diffuse flux

- RTE in the Purely Absorbing / Scattering Atmosphere
- Boundary Condition at Surface : The surface albedo is α_s

$$\alpha_s = 0.46 - 0.34 \tanh \frac{T_s - 2}{r_s}$$

• Optical Thickness: $\tau_{air} = WVP \times (\kappa_{H_2O,abs} + \kappa_{H_2O,sca}) + AP \times \kappa_{N_2,sca}$

Results

Our Simple Spectral Model

$$\alpha_p = \frac{\int \alpha_v(v) B_*(v)}{\int B_*(v)}$$

 ≈ 1)

Double layer atmosphere (Cloud)

Add a purely scattering cloud layer either on top of or at the bottom of the single layer atmosphere

269. 15*K*

2*K*

New Boundary Conditions: The continuity of radiation fluxes at the interface

Surface Temperature (K)

LBL Calculation

LBL Model: PyRADS-shortwave Cloud

- Low Clouds: The cloud base fixed at 0.9 surface pressure level, liquid
- High Clouds: The cloud top fixed at a constant temperature of roughly 225 K (fixed anvil temperature hypothesis), solid

Take Home Message

- Although based on simple assumptions, this analytical model can successfully capture the behaviors of planetary albedo from the snowball to the steam limit.
- For present-day Earth, barring the change of cloud cover and content, this model predicts the planetary albedo should decrease as surface warms, which is testable through satellite observation.