Adapting Controlled-Source Seismic Techniques for Earthquake Reflection Imaging in Complex Environments: Insights from Krafla Volcano, NE Iceland Regina Maass¹, Ka Lok Li¹, Christopher J. Bean¹, Benjamin Schwarz², Ivan Lokmer³ **ISOR**

Landsvirkjun

¹Dublin Institute for Advanced Studies, Ireland (maass@cp.dias.ie)

SETTING AND MOTIVATION

STUDY SITE: KRAFLA

EGU

- caldera Volcano in with large Iceland, а geothermal area.
- Known for the encounter of magma through drilling at 2.1 km depth at the IDDP-1 borehole [1].
- The magma pocket was undetected in prior studies.
- Here, we adapt a controlled-source technique to image the shallow crust at Krafla using **reflections** from local earthquakes.

Key questions

1.) Can we detect the IDDP-1 magma pocket in the data and what is the overall structure of the geothermal system?

2.) What challenges arise due to the source-receiver geometry?

• Recorded during 5 weeks in 2022.

DATA

REAL DATA

- Complex with strong scattering, especially in the S-wave coda [2].
- In some events, coherent phases in P-wave coda on Z-components (Fig. 2). -> These are used in our imaging workflow.

SYNTHETIC DATA

- Full-waveform simulations with SPECFEM2D and local 1D velocity models with a reflector introduced at 2.5 km (Fig. 2).
- To benchmark code, validate results.

References

/iti crater

Fig. 2: Example wavefield due to an arbitrary earthquake. Velocity models used in simulations, real data and synthetics. Conversion (S-P)