
Adapting Controlled-Source Seismic Techniques for Earthquake Reflection Imaging 
in Complex Environments: Insights from Krafla Volcano, NE Iceland

SETTING AND MOTIVATION

DATA

We show vertical cross-sections 
along selected lines (Fig. 4). 

White/black color shows reflectivity 
strength as function of depth and Y-
position.

For LINE C, we compare real with 
synthetic data.

Gaps in images mark areas with no 
contributing event-station pairs.

CIBS: THE METHOD RESULTS AND DISCUSSION

1.) Can we detect the IDDP-1 
magma pocket in the data and 
what is the overall structure of 
the geothermal system?

2.) What challenges arise due to 
the source-receiver geometry? 

  

              COMMON-IMAGE-POINT-BINNING-AND-STACKING (CIBS)  

REAL DATA

SYNTHETIC DATA

For each station-event pair: compute theoretical traveltimes of reflections and 
their bounce points (X,Y) assuming a flat reflector every 20 m in depth.

Extract combinations of stations 
& events for which reflection 
bounce point lies within grid cell.

Display traces in a 'common-image-
point-gather' and stack along the 
reflection trajectory to obtain

2. PROCEDURE FOR EACH GRID CELL

Obtain reflectivity matrix    : each grid cell provides 
reflectivity strength at this point in space.
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1. RAYTRACING OF REFLECTIONS AND GRIDDING

Synthetics 5-25 HzReal data 5-25 Hz
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     48 local earthquakes (M < 1.5). 
     101 short-period (5 Hz) seismometers.
     Recorded during 5 weeks in 2022.

KRAFLA

Key questions

Coherent 
phase

0.6 -

TAKE-HOME MESSAGES

Reflectors around 2.5 km depth. 
-> Potentially linked to IDDP-1 magma pocket or brittle-ductile boundary.

Direct waves & unwanted phases might create spurious reflectors.
Due to similar apparent velocities of phases related to source-station geometry.

 
    

WE ADAPTED CIBS FOR PASSIVE-SOURCE DATA IN COMPLEX SETTINGS.

The CIBS Python code will be made freely available on GitHub. 

METHODOLOGICAL IMPLICATIONS
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Fig. 2: Example wavefield due to an 
arbitrary earthquake. Velocity models used 
in simulations, real data and synthetics.

Fig. 1: Study setup.
Fig. 3: 
Illustration 
of the CIBS 
method 
using 
passive 
sources.
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Complex with strong scattering, especially in the S-wave coda [2].
In some events, coherent phases in P-wave coda on Z-components (Fig. 2).
-> These are used in our imaging workflow. 

Full-waveform simulations with SPECFEM2D and local 1D velocity models
with a reflector introduced at 2.5 km (Fig. 2). 
To benchmark code, validate results.

Discretize the study area into a 3D grid with cells (100 × 100 × 20 m).

Reflectors around 2.1 km depth -> Might be top of IDDP-1 magma pocket.
-> But direct P waves mask potential reflections, complicating interpretation. 

STUDY SITE: KRAFLA

Volcano caldera in NE 
Iceland, with a large 
geothermal area.  

Here, we adapt a controlled-source 
technique to image the shallow 
crust at Krafla using reflections 

from local earthquakes.

 
Known for the encounter of 
magma through drilling at  2.1 km 
depth at the IDDP-1 borehole [1].   
The magma pocket was 
undetected in prior studies.  

Commonly used in controlled-source seismology.
We adapt it for passive imaging in new, fast & parallelized Python code.

Unexpected in synthetics 
(no reflector in the model 
at this depth!). 

Expected in synthetics. 
Great, our code works!

-> Real reflectors.

Unexpected in synthetics 
(no reflector in the model 
at this depth!). 

-> Brittle-ductile boundary/
     Bottom of IDDP-1 
     magma pocket?

-> Unclear if reflectors 

     are real.

No artifacts expected.Reflections from the 
IDDP-1 magma pocket 
expected.

BUT: Direct P waves
interfere with reflections.

S waves create artifacts 
at these depths.

S wave signature can be 
clearly seen in real data 
(e.g., in LINE C).

-> Reflectors are likely 

     not real.

Currently, we are working on reducing artifacts through muting and phase-
weighted stacking.

Caution is needed when applying CIBS or similar methods to passive data!

Fig. 4 and 5: 
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Method stacks amplitudes along reflection trajectories, suppressing other 
phases with different apparent velocities. 
  

PROBLEM: ARTIFACTS DUE TO DIRECT WAVES

BUT: small study area and earthquake-station geometry result in similar 
apparent velocities for different phases, e.g., direct P- and S waves (Fig. 2).

-> Unwanted phases create spurious reflectors/artifacts in images.
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GEOLOGICAL IMPLICATIONS

IDDP-1


