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Four discussed both Arctic and Antarctic regions and one was

solely Antarctic, the remainder (88%) had an Arctic focus.
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The PCAPS ORCAS task team is part of the WMQO's World Weather Research Programme 5, %
(WWRP)'s PCAPS (Polar Coupled Analysis and Prediction for Services) project. 5 6 {
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focus on sea ice research and Arctic users. Year
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services. => Actionability Most polar weather, water, ice and climate (WWIC) users do not have access to tailored
@ PCAPS SUSTAINABILITY: Enable informed " e .- products, decision-support services, or a local meteorologist / knowledge broker.
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Partnerships
Sustained actionability, impact & fidelity via:
@ PCAPS PARTNERSHIPS: Strengthen TRAINING: ML models learn from several years of a high-quality dataset

partnerships through transdisciplinary (e.g., EC sis), progressing from one analysis state to the next
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For FORECASTING, we autoregressively step the trained model 6h into the future x,, = f(x;;_1)

PCAPS ORCAS Task Team

State variables and not High-quality coupled reanalyses

become central to train ML models
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ML / hybrid models
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Scorecard for upper-level variables for the year 2020. (Quasi-)operational models are evaluated against IFS analysis. All other models evaluated against ERA5. Order of

ML models reflects publication date. Fo

r more detail, visit Deterministic Scores.

Recent advances in artificial intelligence are
transforming sea-ice forecasting, with Al
models demonstrating comparable or superior
performance to traditional physics-based
approaches while requiring significantly fewer
computing resources.

These advantages could enable more
frequent and timely predictions, benefiting
stakeholders. o
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A The use of observations

* process understanding

* parameterisation development

 data assimilation for initial conditions
 forecast verification and model validation

... in data-driven models:

Certain observations are better suited to
Interact with current Al systems
(e.g., remote sensing)

Others less so

* data assimilation for reanalysis and initial conditions
* forecast verification and model validation
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