Session ERE6.2 EGU25-14907

EcoPlots - The data Integration platform for systematic site-based surveys

Siddeswara Guru, **Javier Sánchez González**, Avinash Chandra, Arun Singh Ramesh, Junrong Yu, Gerhard Weis

j.sanchezgonzalez@uq.edu.au | www.tern.org.au

28/04/2025

We at TERN acknowledge the Traditional Owners and Custodians throughout Australia, New Zealand and all nations. We honour their profound connections to land, water, biodiversity and culture and pay our respects to their Elders past, present and emerging.

Context

In ecological site-based surveys...

- data collection happens as part of a site visit...
- to observe and measure real world features of the site
- Diverse data are collected, samples taken and archived... to measure attributes

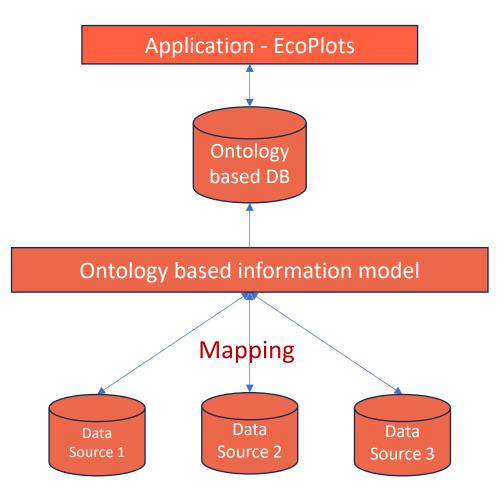
Challenges – Data integration

- No common survey protocols/methods used across different surveys
- Multiple data formats and schemas
- Multiple terminologies and definitions
- There is no agreed standard to share fieldbased survey data

Challenges – Data Integration

Need for standards to exchange data

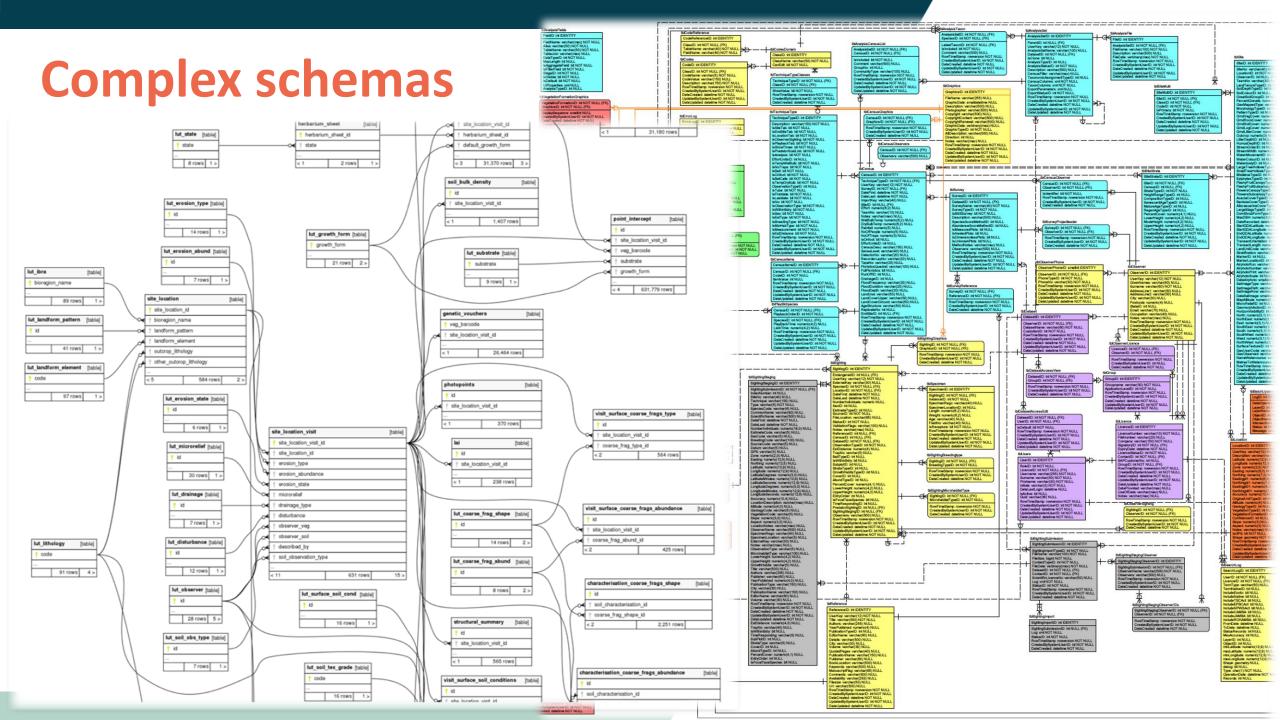
- share data across different sources
- use data from multiple sources
- enable data interoperability
- enable standard representation of data
 - develop validation tools

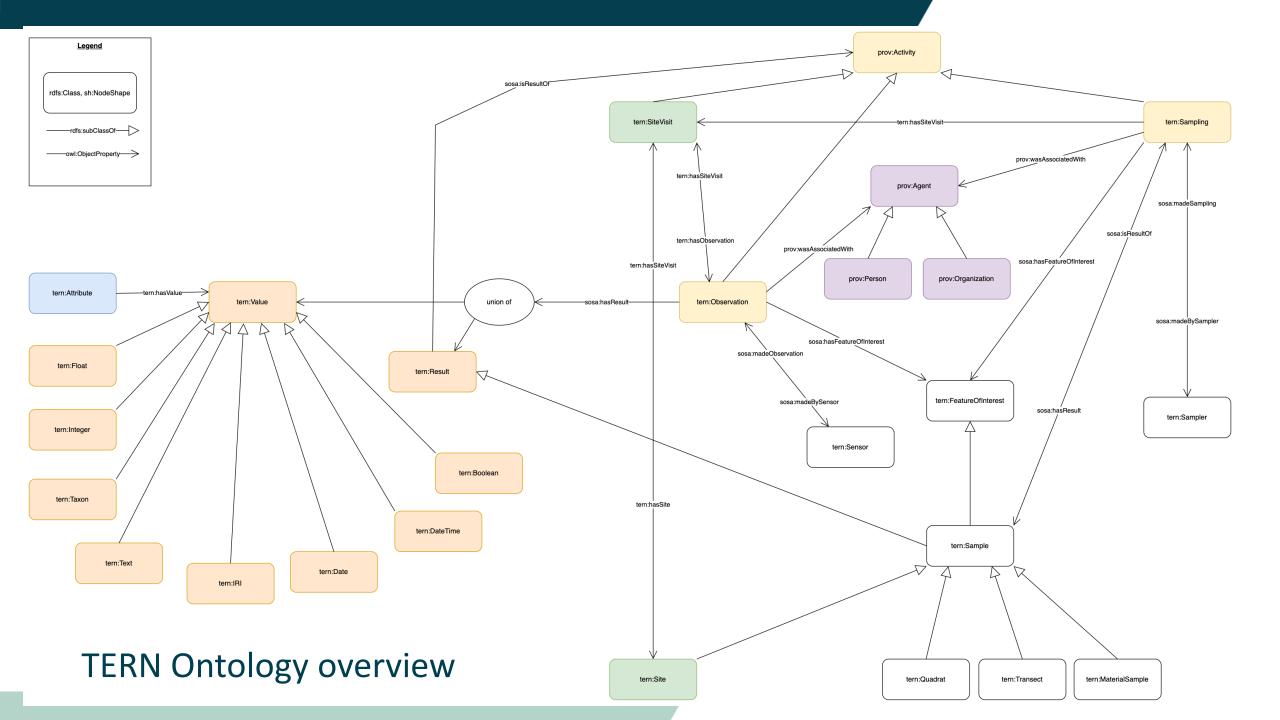


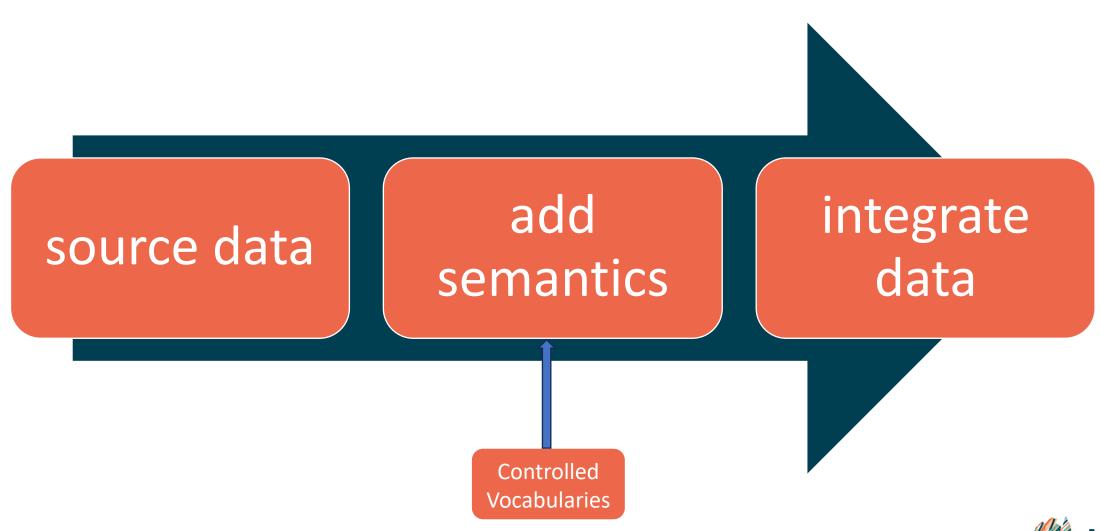
Ontology-based Data Integration

Ontology is a formal description of knowledge as a set of concepts within a domain

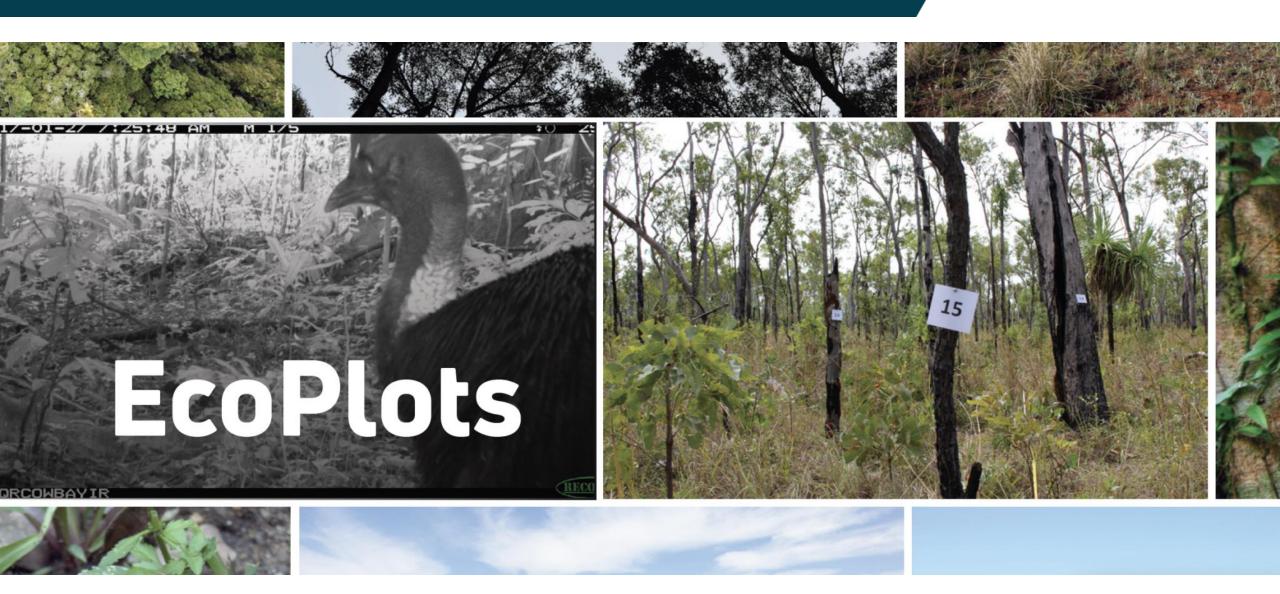
Enables sharable and reusable knowledge representation





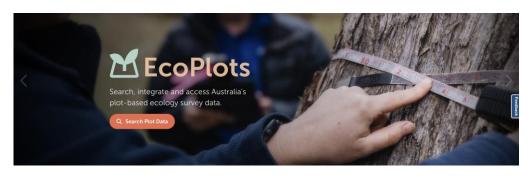

Information Model

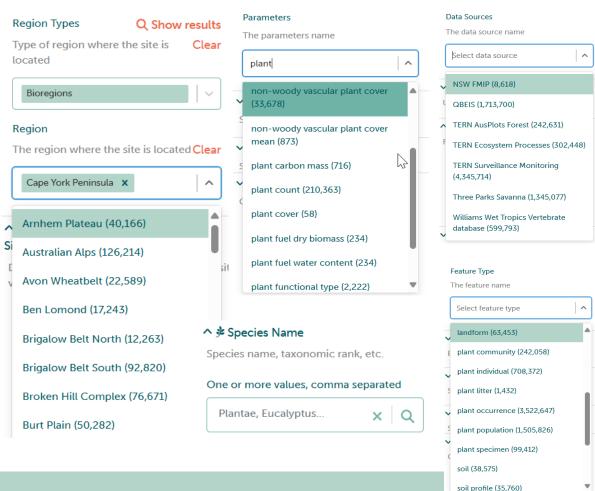
- Based on Semantic Sensor Network Ontology (SSN)
- Dependent on RDF, RDFS, Dublin core, GeoSPARQL
- Expressed in OWL Web Ontology Language
- Shapes Constraint Language (SHACL) for validation
- Simple Knowledge Organization System (SKOS) to represent controlled vocabularies



https://ecoplots.tern.org.au

My Downloads Resources ▼ Help Mr Javier Sanchez Gonzalez ▼ Home


	Ecosystem Rese	earch Infrastruc
	丛 Get Data	API
Filter by:	5 Cle	ar All Filters
^ ⊘ Region Typ	oes and Region	s (1)
Region types an	d regions	
Region Types	Q Sho	ow results
Type of region located	where the site is	Clear
Bioregions		~
Region		
The region whe	ere the site is loc	ated Clear
Cape York Pen	insula X	~
^ ■ Data Source	es. Datasets. P	roiects.
	(1)	,
Data sources, da visits	itasets, projects,	sites and site
Data Sources	Q Sho	ow results
The data source	e name	Clear
TERN Surveilla	nce Monitoring X	
Sites		


The site name

Select site

API _	site visit plant occurre	nce											
ilters	<				Rows: 175,718	Page Size: 5	0 ▼	> »					0
	Data source	Site id	Site visit id	Site visit date	Latitude	Longitude	Feature of interest	Parameter	Result value	Result time	Unit of measure	Method	î
ults lear	TERN Surveillance Monitoring	QDACYP0010	20180614	14/06/2018	-13.09186	142.7728	plant occurrence	plant height	0.21	14/06/2018	metre	Point intercept	
.cai	TERN Surveillance Monitoring	QDACYP0002 [®]	20180607 3	07/06/2018	-15.28454	145.1915	plant occurrence	plant height	0.05	07/06/2018	metre	Point intercept	
<u>~</u>	TERN Surveillance Monitoring	QDACYP0020 ⁸	20180710 3	10/07/2018	-10.93617	142.467	plant occurrence	plant height	2	10/07/2018	metre	Point intercept	Feedback
ear	TERN Surveillance Monitoring	QDACYP0002 [®]	20180607 3	07/06/2018	-15.28454	145.1915	plant occurrence	plant height	0.05	07/06/2018	metre	Point intercept	*
v leai	TERN Surveillance Monitoring	QDACYP0023	20180712	12/07/2018	-12.33224	142.2311	plant occurrence	plant height	0.01	12/07/2018	metre	Point intercept	
	TERN Surveillance Monitoring	QDACYP0013 ⁸	20180704	04/07/2018	-12.20213	142.5687	plant occurrence	plant height	0.3	04/07/2018	metre	Point intercept	
i.	TERN Surveillance Monitoring	QDACYP0001 [®]	20180607 3	07/06/2018	-15.27823	145.2528	plant occurrence	plant height	0.66	07/06/2018	metre	Point intercept	
nd site	TERN Surveillance Monitoring	QDACYP0011 ⁸	20180614 3	14/06/2018	-13.20697	142.7398	plant occurrence	plant height	0.2	14/06/2018	metre	Point intercept	
ults	TERN Surveillance Monitoring	QDACYP0003 [®]	20180608 3	08/06/2018	-15.27674	145.2863	plant occurrence	plant height	0.21	08/06/2018	metre	Point intercept	
ear	TERN Surveillance Monitoring	QDACYP0003 [®]	20180608 3	08/06/2018	-15.27674	145.2863	plant occurrence	plant height	0.07	08/06/2018	metre	Point intercept	
<u>~</u>	TERN Surveillance Monitoring	QDACYP0005 [®]	20180610	10/06/2018	-14.14262	142.9763	plant occurrence	plant height	0.05	10/06/2018	metre	Point intercept	
	TERN Surveillance Monitoring	QDACYP0006 [®]	20180611	11/06/2018	-14.22668	142.9325	plant occurrence	plant height	9	11/06/2018	metre	Point intercept	
<u> </u>	TERN Surveillance Monitoring	QDACYP0012 [®]	20180615	15/06/2018	-13.32028	142.5913	plant occurrence	plant height	3	15/06/2018	metre	Point intercept	
	TERN Surveillance Monitoring	QDACYP0002	20180607 3	07/06/2018	-15.28454	145.1915	plant occurrence	plant height	0.6	07/06/2018	metre	Point intercept	

- Ability to search and access at individual observation
- Provide facets to search based on...
 - multiple geographic regions
 - datasets, projects, sites
 - feature type and attributes
 - procedure used to collect data
 - parameters / observable properties
 - taxonomic information
 - time range
 - ...


```
"type": "FeatureCollection", +
"features": [↓
    "type": "Feature", ↓
    "id": "http://linked.data.gov.au/dataset/tern-ecosystem-processes/dataset-vegetation_species/sv-alice_mulga
    "properties": {↓
      "dataset": {↓
       "dataset.title": "TERN Ecosystem Processes", 4
        "dataset.attributes": {}↓
        "siteName": "Alice Mulga, core1ha",↓
        "parentSite": "Alice Mulga",↓
        "site.attributes": {↓
          "plotWidth Metre": {↓
            "attribute": "plot width_ metre",↓
           "value": 100.0,↓
           "unit": "Metre"↓
          },↓
          "plotLength_Metre": {↓
           "attribute": "plot length_ metre", +
            "value": 100.0,4
            "unit": "Metre"↓
      "siteVisit": {↓
       "siteVisitName": "20120123",↓
        "siteVisitDate": "2012-01-23T00:00:00"↓
```

"observations": [↓

datasetTitle

"feature.type": "plant individual", + "featureId.attributes": {},↓ "feature.observations": {↓ "scientificName": [↓

"value": "Acacia aneura", 4

projectTitle

2 TERN Ecosystem Processes Vegetation species NTABRT0002

3 TERN Ecosystem Processes Vegetation species NTABRT0002

4 TERN Ecosystem Processes Vegetation species NTABRT0002

5 TERN Ecosystem Processes Vegetation species NTABRT0002

6 TERN Ecosystem Processes Vegetation species NTABRT0002

7 TERN Ecosystem Processes Vegetation species NTABRT0002

8 TERN Ecosystem Processes Vegetation species NTABRT0002

9 TERN Ecosystem Processes Vegetation species NTABRT0002

10 TERN Ecosystem Processes Vegetation species NTABRT0002

11 TERN Fraguetem Processes Vegetation species NTARRT0002

"attributes": {},↓

"unit": null,↓

"observableProperty": "scientific name",↓

"resultTime": "2012-01-23T00:00:00", \

siteName

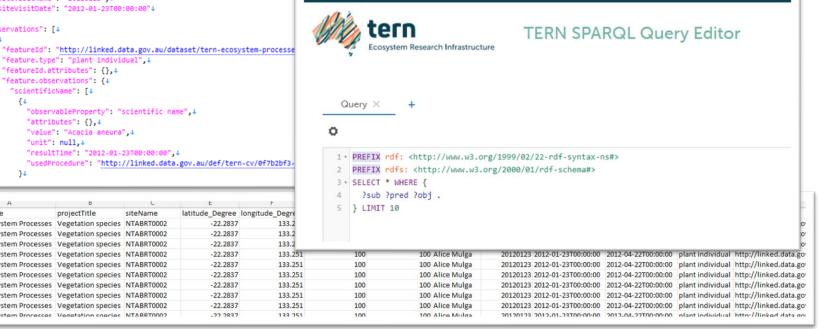
-22.2837

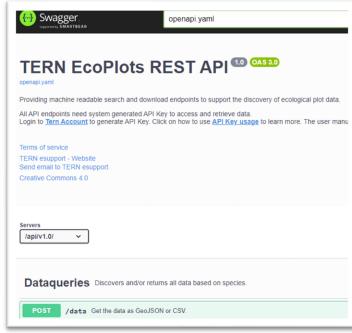
-22,2837

-22.2837

-22.2837

-22.2837


-22,2837


-22.2837

-22.2837

-22.2837

- Data download based on BagIT specification
 - as CSV
 - as GeoJSON
- Data accessible through API and SPARQL endpoint
- Mint DOI to improve the reusability of data

Conclusions

- Built common information Model as an extension to Observation and Measurement (O&M) standards and SOSA ontology for data integration
 - The information model is the <u>domain model in the Biodiversity Data</u> <u>Repository (BDR)</u> built by the Australian Government
- Built semantic web platform to integrate systematic-survey data collections
- Ability to query data at single observation from a particular site visit

Further Information

- TERN Information Model: https://linkeddata.tern.org.au/tern-ontology/
- TERN Vocabularies: https://linkeddata.tern.org.au/prez/tern-cv/v/
- EcoPlots: https://ecoplots.tern.org.au
- TERN: <u>TERN Australia's Terrestrial Ecosystem Research Network</u>
- BDR: <u>Biodiversity Data Repository DCCEEW</u>

We at TERN acknowledge the traditional owners and their custodianship of the lands on which TERN operates. We pay our respects to their ancestors and their descendants, who continue cultural and spiritual connections to country.

TERN is enabled by NCRIS.

Our work is a result of collaborative partnerships with many universities and institutions.

To find out more please go to **tern.org.au.**

Acknowledgement: TERN Data Services and Analytics Team, ARDC Infrastructure

Contact: Javier Sánchez González, j.sanchezgonzalez@uq.edu.au