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Simulation of snowmelt can be enhanced by addition of (remotely sensed) 

snow cover data.

Lumped models benefit from an improved description of the heterogeneity 

of topography and snow cover within mountain catchments.
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1 .  B A C KG R O U N D

2 .  H Y P OT H E S E S

3 .  S E T U P

• Lumped, daily

• Single model for 5224 catchments, with ≥ 30 years of streamflow observations

• 10-fold cross-validation (train/validation/test : 4178 / 523 / 523) 

out-of-space and out-of-time

• 1985-2020 (5y validation / 20y train / 10y test)
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4 .  P R E L I M I N A R Y  R E S U LTS

CERRA daily time-series:

• P

• T_min

• T_max

• ISWR

41 catchment attributes 

retrieved from EStreams [2]

5 .  O U T LO O K

While regionally-trained LSTM show good performance over mountain areas, the model uncertainty is still largest during the melting period. We 

observe an increased ensemble spread and larger errors of a single member during snow and glacier melt (Apr-Oct depending on elevation) [1]. 

LSTM Ensemble Spread

Model Median KGE Median NSE

Ensemble mean SD Ensemble mean SD

Base Setup 0.65 σ = 0.046 0.70 σ = 0.039

(1)  Additional Inputs * 0.64 σ = 0.023 0.72 σ = 0.016

Table: Model test performance over the snow melt season (Apr-Jun, 160 basins in the Central Alps). 

Taken from [1].

R E F E R E N C E S

In future work, we will further investigate the integration of additional data describing the snow cover:

Comparison of different integration methods

Comparison of different data levels (local vs. Europe-wide snow products, time-series vs. attributes)

Adding simulated SWE from a distributed model [3] as additional input to the model reduces the 

ensemble spread for the snow melt season (Apr-Jun).

Absolute Performance does not improve by addition of catchment-average simulated SWE.
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How can we improve the simulation of melting 

processes in deep learning hydrological models?
Test Results

Base Setup
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* simulated SWE from distributed model PCR-GLOBWB 2.0 [3]
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Median KGE: 0.555

Median NSE: 0.558

Increasing the hidden size helps performance.

The model is sensitive to the model head (output layer).

Vote for the 

OSPP contest

Optimizing the Architecture
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