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Motivating work
Predictions of the rate and extent of ice lost from Antarctica is the one of the largest sources of 
uncertainty in estimating global sea-level rise, largely due to a poor understanding of the 
mechanisms governing iceberg calving. Ice-shelf fracture models typically employ a linear 
elastic model for ice. However, ice exhibits both elastic and viscous behavior in response to a 
load. This is evidenced by the observation that ice flow speeds and therefore ice viscosity are 
influenced by the evolution of damage (Fig. 1; Sun and Gudmundsson, 2023).

Rheological descriptions of ice viscoelasticity
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Model description

Phase-field model of ice fracture
Phase-field representation of a crack: 

a continuous change in structure along 
an interface

Discrete representation of a crack: 
a sharp change in structure along 

an interface
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dε
dt ≈ A(T) σ(t)3

To examine the relationship 
between ice flow and fracture, we 
use a phase-field description of ice 
fracture that is coupled to a 
transient and steady-state model 
of ice flow. Ice viscosity is 
transient (changing in time) over 
short strains, and so inclusion of a 
model for the transience in ice can 
fill the gap in describing brittle to
ductile behavior in ice-shelves.

Parameter 
describing ice 

softness 
during steady-

state creep 
(used in Glen’s 

flow law) Left: Response of ice flow to damage within Pine 
Island Ice-shelf (Sun and Gudmundsson, 2023).

steady-state behavior 
described using Glen’s 

flow law • Transience (as represented 
by a Kelvin-Voight element) 
primarily reduces the rate 
of crack propagation by 
relaxing stress around a 
damaged region.
• Models of crack growth that 

exclude the transient 
viscosity in ice will 
overpredict the rate at 
which a crevasse will grow, 
which can lead to an 
underprediction of the 
buttressing potential of 
fast-flowing ice-shelves.
• Including a Kelvin-Voight 

model for ice can fill the 
gap in descriptions of ice 
fracture and flow.

There is a trade off 
between how fast an ice-
shelf is being strained and 
how much displacement 
is needed for a crevasse 
to propagate. primary behavior during 

transient response to stress 
instantaneous elastic

behavior used to describe 
surface fracture

Composite model spanning 
the range of ice flow and 

fracture behavior
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Remarks
• The ice is initially isotropic and homogeneous with a constant 

density of 918 kg/m3.
• The shelf is at a constant temperature of -20oC.
• The domain is defined over a refined mesh, with a finer mesh 

spacing around the anticipated path of the crevasse.

Boundary Conditions

approximately linear stress 
dependence

Key Takeaways

non-linear stress 
dependence
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Displacement (m)

t = 0.13 hr
ux= -9.36x10-2 m

dux/dt = 2x10-4 m/s

t = 0.18 hr
ux= -1.29x10-1 m

dux/dt = 2x10-4 m/s
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A(T = 0oC) = 2.4x10-24 Pa-3s-1≈ A T,ρ σe/ σref(T)
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