X5.80: Multilayer Retrieval of Cloud Top heights from MODIS over the Southern Ocean (SO)

Arathy A Kurup^{1,2,4}, Caroline Poulsen³, Steven Siems^{1,2,4}

¹School of Earth, Atmosphere and Environment, Monash University, Melbourne, Australia.

² The ARC Centre of Excellence for the Weather of the 21st Century, School of Earth, Atmosphere, and Environment, Monash University, Melbourne, Victoria, Australia

³Bureau of Meteorology, Melbourne, Australia

⁴ARC Securing Antarctica's Environmental Future, School of Earth, Atmosphere, and Environment, Monash University, Melbourne, Victoria, Australia

Why are SO clouds so important?

Frequency of multiple cloud layer coverage (Mace et al. 2009)

Cloud Top Heights (CTH) retrieval of multilayer cloud by CALIOP and

- Multilayer clouds are more frequent over the SO
- Schuddeboom and McDonald (2021) identified substantial discrepancies in the representation of clouds between satellite data and climate models which leads to CRE biases over the SO
- L'Ecuyer et al., (2019) found that multilayer clouds contribute to enhancing LW radiation and reducing SW leading to global cloud radiate effects (CRE)
- Existing retrieval algorithms of Passive Satellites commonly assume clouds as single layer instead of multilayer
- ✤ We have compared different passive sensors over the SO and found biases in cloud properties retrieval (Fig 1)

Data used for Neural Network (NN)

- Moderate Resolution Imaging Spectroradiometer (MODIS)-AQUA (MYD06 and MYD02SSH data)
- CLOUDSAT/Cloud Profiling Radar (CPR) and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) merged dataset (CC)
- Fifth generation ECMWF atmospheric reanalysis (ERA5)

The Bureau

Contact: arathy.aneeshkumarkurup@monash.edu

Orchid

Abstract EGU

Summary of Results

Table 3: Mean values and Standard Deviation for NN(Predicted) CTHs data, NASA MODIS CTH and CloudSat-CALIOP CTHS.

		NN CTH		NASA MODIS CTH		CloudSat- CALIOP	
		Top layer	Second layer	Top layer	Secon d layer	Top layer	Second layer
Mean [km]	Single-layer cases	3.47	-	3.12	-	3.56	-
	Multi-layer cases	8.04	3.45	5.25	-	8.26	3.42
Standard Deviation [km]	Single-layer cases	3.05	-	2.98	-	3.25	-
	Multi-layer cases	2.67	2.24	3.48	-	2.84	2.73

Table 4: Error Statistics for NN(Predicted) CTHs data and NASA MODIS CTH against CloudSat-CALIOP CTHS.

CloudSat-CALIOP (CTH) vs		NN MOI	DIS CTH	NASA MODIS CTH		
		Top layer	Second layer	Top layer	Second layer	
Mean Bias Error [km]	Single-layer cases	0.09	-	0.44	-	
	Multi-layer cases	0.22	-0.02	3.00	-	
Mean Absolute Error [km]	Single-layer cases	0.70	-	1.05	-	
	Multi-layer cases	0.78	1.09	3.24	-	
Root Mean square error [km]	Single-layer cases	1.03	-	1.76	-	
	Multi-layer cases	1.10	1.63	4.30	-	
Correlation	Single-layer cases	0.95	-	0.85	-	
	Multi-layer cases	0.93	0.80	0.54	-	

Retrieval Comparison

Fig 4: Probability distribution of CTHs used for validation of the NN training for the inputs, a) single-layer training and b) for multilayer training Probability Distribution of Cloud top height for Multilayer pixels

• Extend the NN to other passive sensors in the SO

CMIP6 models, Journal of Geophysical Research: Atmospheres, 126, e2021JD035 310, 2021.

b)

• Modify algorithm to retrieve two-layer Cloud base height

References

Future work

., Siems, S. T., & Robbins, D. J. (2025). Validation and comparison of cloud properties retrieved from passive satellites n. EGUsphere, 2025, 1-41.<u>https://doi.org/10.5194/egusphere-2025-209, 2025</u> •L'Ecuyer, T. S., Hang, Y., Matus, A. V., & Wang, Z. (2019). Reassessing the Effect of Cloud Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. Journal of Climate, 32 (19), 6197–6217. https://doi.org/10.1175/jcli-d-18-0753. •Mace, G. G., Zhang, Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C., & Winker, D. (2009). A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. Journal of Geophysical Research Atmospheres, 114 (8). https://doi.org/10.1029/2007JD009755 •Ritman, M., Poulsen, Caroline .and Siems, S., and Robbins, D.: Developing and interpreting a Neural Network approach to multilayer cloud system identification in Himawari-8/9, Australian Meteorological and Oceanographic Society, 2022. •Schuddeboom, A. and McDonald, A.: The Southern Ocean radiative bias, cloud compensating errors, and equilibrium climate sensitivity in