Global Distribution of Small Reservoirs and Their Role in Surface Water Storage

1. Introduction

TUHH

Hamburg University of

Technology

- Global freshwater resources are increasingly stressed by population growth, agricultural expansion, and climate variability [1].
- Small agricultural reservoirs (< 0.1 km²) play a vital role in buffering irrigation and livestock supplies during dry seasons [2].
- However, comprehensive understanding of their global distribution and contribution to local water budgeting and management remains limited.

2. Objectives

- To globally identify small agricultural reservoirs (<0.1 km^2) by combining Sentinel-2 NDWI with Sentinel-1 backscatter in cloud-impacted seasons.
- To provide a comprehensive dataset of spatio-temporal distribution of agricultural reservoirs and their storage capacity.

3. Methods and data

- Global land-cover datasets were harmonized to build a gap-filled cropland mask that excludes lakes, rivers, urban areas, wetlands, and forests.
- Cloud free Sentinel-2 images were filtered, a median composite was generated, NDWI was calculated, and the result was masked to cropland.
- When Sentinel-2 coverage was not sufficient, Sentinel-1 was filtered, a mean VV backscatter image was computed, a region-specific threshold was applied to detect surface water, and the result was merged with the NDWI mask.
- Connected-component analysis and pixel-count were used to group water objects, compute their areas, and classify reservoirs into size bins (300 m^2 – $100 000 \text{ m}^2$).
- Total number of reservoirs, their cumulative area, and storage capacity were aggregated in 50×50 km² grid cells and their seasonal variations were exported

Sankeerth Govindaiah Narayanaswamy^{1,2}, Milad Aminzadeh^{1,2}, Kaveh Madani³, Nima Shokri^{1,2}

¹Hamburg University of Technology, Institute of Geo-Hydroinformatics, Hamburg, Germany ²United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamburg, Germany ³United Nations University Institute for Water, Environment and Health (UNU-INWEH), Richmond Hill, ON, Canada

4. Preliminary results

• The extent of small agricultural reservoirs was showcased in selected regions

• Seasonal variations of the extent of reservoirs in 20 tiles (3°x3°) were extracted from March 2023 until February 2025.

Figure 1: Global and regional views of mean reservoir extent (2023–2024): a-e) Insets for five example tiles—North India, Southeast Australia, Germany/Czechia, South Brazil, and Indiana (USA), respectively—each showing 50×50 km² grids with (top) total reservoir count and (bottom) mean reservoir area (km²). World map of 20 study tiles, coloured by mean reservoir area (km²)

Size-distribution of the reservoirs

Figure 2: Reservoir size-class breakdown for key regions: Comparative bar chart of reservoir counts by size class for the five tiles in Figure 1.

Figure 3: Seasonal dynamics for key regions: a–e) Time series for tiles in Figure 1, depicting over eight seasons (2023 MAM to 2024 DJF): (left) total reservoir area (km²), (centre) reservoir density (# per grid cell), and (right) estimated storage (million m^3) using power law ($V = 0.38 \times n \times A^{1.173}$) [3].

5. Next steps

- both radar and optical data.
- map of small reservoirs.
- size-class breakdowns, and storage estimates.

6. References

[1] Hoekstra, J., Molnar, J. L., Jennings, M., Revenga, C., Spalding, M. D., et al. (2010). The atlas of global conservation: Changes, challenges, and opportunities to make a difference.

[2] Aminzadeh, M., Friedrich, N., Narayanaswamy, S., Madani, K., Shokri, N. (2024). Earth's Future, 12, e2023EF004050.

[3] Mady, B., Lehmann, P., Gorelick, S. M., Or, D. (2020). Environmental Research Communications, 2(6), 061002.

Acknowledgments :

- Financial support by the Institute of Geo-Hydroinformatics at Hamburg University of Technology is gratefully acknowledged.
- The authors are thankful for access to the datasets ESA WorldCover v1/v2, ESRI LULC, HydroLakes, MERIT Hydro, OSM water, Sentinel-1 and 2 sceneries.

• Machine-learning models will be developed to derive region-specific detection thresholds for

• The workflow will be scaled globally in Google Earth Engine to generate a comprehensive

• An interactive dashboard will be built to allow dynamic exploration of seasonal trends,

