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S - - Preliminary Analysis
We use fibre-optic sensing to show that the seismic waves caused by an anticrack in a
Simple mOdel we eStimate Speed at 35.1 m/S over a diStance Of >800m We Verify the location over time and derive an estimate Of Iits propagation Speed
estimate with a direct measurement of the anticrack. Fibre-optic seismology can be useful

@ MRS MESMEMISE] MELB @ shehy weel [Eyer ealElpee * Filtering of the seismic signal — Rayleigh waves travelling through the firn and ice

are highly dispersive. Thanks to a clear signal, the fundamental mode can be filtered
: out (mode identification based on Fichtner et al., 2023). Applying a narrow bandpass
IntrOd UCtlon filter allows us to pick a single phase velocity

Snow slab avalanches are dangerous but fascinating. The collapse of a snow weak layer
below a slab can self-propagate and release the slab as an avalanche

Calculating seismic wavefront arrival times — The shape of seismic wavefronts in

_ | the seismogram can inform about the location of the anticrack propagation front
 Dynamics of weak-layer collapse can be controlled by anticrack or (super)shear

propagation (Gaume et al., 2018; Heierli, 2008; Trottet et al., 2022). In flat terrain, it is

. y , 1. Discretize the anticrack 2. Anticrack closer to the 3. Tune point sources’
only anticrack (“whumpf”) . . . . .
propagation as a series cable - less parabolic, locations to fit the

« Speed of propagation is essential to determine the dynamics. Knowing the of point sources % more linear arrival times<< recorded data
propagation distance helps to predict avalanche size (van Herwijnen, 2023)

» Previous research has used seismometers to take the time between fracture initiation 500 S , ey i ———
and vertical displacement of the slab and used this for direct speed measurements Seismic waves O e g Deneassed 10.511 5tz
(e.g. van Herwijnen & Schweizer, 2011) £1000 from one point 6;3_ L 1! j/@/'/ i
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 Anticrack propagation estimates
feéémiiwatv.effot”t « Speed of 35.1+£1.7 m/s. Given by the slope of the distance/time plot. Direct near-
nairect estimates . . . .
‘ field measurements with a geophone array confirm our estimate

« Distance >800m. Point source model cannot reconstruct where the anticrack

D at 3 stopped, but it must have propagated at least 800m
Shot*
The data was recorded in the upper part of the Northeast Greenland Ice Stream (NEGIS) 1200 — A, ‘ ‘ 300 o
. . . . % Excluded: Measured speed
in July 2022 by Fichtner et al. (2023). Recording the whumpfs was coincidental 51000 % . boint source = 250 ~33.3 /s
— o o, model fails =
- Homogenous snowpack in flat terrain — Can expect large propagation distances. o oetadect o, ‘ - 3 200
No snowpack measurements during this data collection, nearby available < 800 shot signal "l %o@ — =
o +* 6/ (@))
: g : . . = S % =
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. Whumpfs in the seismogram — Eight shots were followed by snowpack settling Accuracy and resolution of forward model. Finite no. of point sources is approximation
which we identified as “whumpfs”. Here we show the fibre-optic recording from an » Point source model only valid when the anticrack front is far from the cable
example shot (figure below) * In reality, the anticrack front should be circular. Higher discretization resolution. Ideally:
=00 | | Integrating mechanical models with a seismic wave propagation model
L i Bandpassed 5-70 Hz Fibre optic seismology can be used in other terrains or geometric setups to track the
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shot, there are about 25s of pure anticrack/whumpf seismic signal
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