Introduction

® o ®
So1l oroanic carbon nreservation and deca Onganic matter decay in laboratory o  decper = olde, in stabe depositonal environments OC
. : In depositional environments, deeper equals : : . :
experiments lead to the exponential to older concentration should exponentially decrease with depth/time
o o decrease in organic carbon (OC) with time . o « If organic carbon decreases with depth, the accumulated OC mass with depth
will show a concave curve. For this to be true, decay must be the main
=- renas in udail marsin, mangrove an | process shaping OC concentrations.
Sedimentation
g
: * This was consider improbable, because ““it seemed unlikely that input and decay rates would
SCAZIaSs blue carbon ecosystems e e oo e T
=
5 , Upper - ° * However, Clymo et al. (1998) found this concave profile in the majority of the peat bogs
£ P 4 Younger g profiles studied that had a coherent “C chronological model.
-~ . ) EIJI'EI -'1'5.":! E-I:.H:I ‘ a
N. Pineiro-Juncal PRELT B e iy i = S 4 2 | o | | |
phase, labils  Remineralization racalcitrant * Therefore, they develop a simple diagenetic model to estimate centennial and millenary OC
carl:u::-n-r!ch & ?"'?'59 '-“'_"dﬂf :,arb-:rn_& K- . . . . .
retatsgst | anserabic  strtegit > Accretion b decay rates in peat bogs, as decay was likely the main process shaping OC with depth.
A . ~ . [ Leaching Remineralization _ Stable v Leeper
M.A. Mateo, C. Leiva-Duenas, E. Serrano, K. Inostroza, M. Soler, E.T. Apostolaki, P. Lavery, C.M. Duarte, A. Older . Seagrass meadows, tidal marshes and mangrove forest are depositional environments
Lafratta’ and O. Serrano. Modified from Trevathan-Tackett et al. (2020) \ where deeper = older. Could the model be applied to estimate centennial and millennial
OC concentration decay rates in their soils?
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soil profile with a decay OC trend would be indicative of good preservation of the stratigraphic 0- 20 W
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Longitude and seawater temperature on group © 75 In the figure to the left: Organic carbon and mud contents, sediment accretion rates, sea water temperature, and 6'3C in the top 25 cm of soil in cores
. . . . . . : . a00- 56 6 30- showing decreasing or no decreasing (stable or increasing) downcore OC trends. Boxplot horizontal lines indicate median values; box, 25th to 75th
Can w¢e eStlmate Centennlal and mlllennlal OC decay rates? classification: decreasing vs. no-decreasing. o Ndp? 005001 + 001001 - 00010 ses percentiles; whiskers: highest and lowest value excluding outliers (Q3+1.5xIQR to Q1-1.5xIQR, IQR: interquartile range); black dots, potential outliers.
Geographic distribution of the whole core data collection (n = 3761). Different lower-case letters indicate significant differences between cores (Wilcoxon test, p-value: * 0.05-0.01, ** 0.01-0.001, *** <0.001). Numbers above
x-axis labels indicate the number of cores per category.
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To estimate decay rates 20- 80-100yr | 500-1,000 yr _‘ : o , . . 9% of initial OC remains after 100 years, 0.1% remains after
, L N | Mangrove Mean 0.017 0.01- LF 0.005  Estimates for mangrove fores.ts are based on only nine data points. 1,000 years. L
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Where M is the OC accumulated mass,  is the n 9 Tirrs s (yeais) which can skew OC decay estimates. . Decay rates at 1 m depth (average age ~1,471 years): &
age, and OC production (p) and decay (k) are the Geographic distribution of the cores in which soil OC decay rates were estimated (n = 83). Seagrass Mean 0.034 0.008 * Subsurface OC additions from roots, fauna, or microbes may lead to e Mangroves: 0.00005 yr
parameters to be estimated. Clymo et al. (1984, - - SE 0.003 0.001 A) OC decay rates (yr''). B) Exponential regression of soil organic carbon decay rates with age. overestimated decay 1‘.21’[68. | e Tidal marshes: 0.0002 yr E
1998). y § | ; n 14 19 * Allochthonous OC 1s more resistant to decay and may cause . Seagrasses: 0.0005 yr'
.. MR -orptAge) SR W Tidal Marsh Mean 0.018 0.0015 ; ; SR underestimation of autochthonous OC degradability.
-~ -~ -~ -~ * Decay rates declined as the time frame used for their estimation , . :
H 1 | i i e SE 0.003 0.0002 nereased * Fitted decay models showed residuals influenced by other processes; -
To estimate the remaining OC after a | | LT - D : « Mangrove and tidal marsh cores exhibited lower decay rates in the due to the lack of information in the specific biogeochemistry Our results offer baseline data for estimating CO: emissions from blue
known time All Mean 0.023 0.007 first 100 years. processes of each core a one-component model was used to avoid carbon ecosystems degradation and benefits from
) 0 L o e e e e e SE 0.002 0.0007 * Decay rates at 100 yr were correlated with mud content across overfitting. conservation/restoration. These soil OC decay rates can inform
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OC(t) =0C,*e n 44 18 habitats, but this relationship did not hold within individual  The Posidonia genus is overrepresented in the modelled seagrass Monitoring, Reporting, and Verification (MRV) frameworks and
Where A(t) is the fraction of OC remaining after Example of modelled cores (left, mangrove core; right, seagrass core right). . o N Zcosys.ten.l;. oot o d t cores, which may limit the representativeness of the seagrass data. support default values for emissions accounting.
time t, AO 1s the initial mass and k is the decay rate Ca WalCt [Cmperature ad no Signiticant CHeet on decay rates.
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