

A new parameterization of dilation using GODAR

Antoine Savard^{1,2}, Bruno Tremblay², and Arttu Polojärvi¹

¹Department of Mechanical Engineering, Aalto University, Espoo, Finland ²Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Canada Correspondence: Antoine Savard (antoine.savard@aalto.fi)

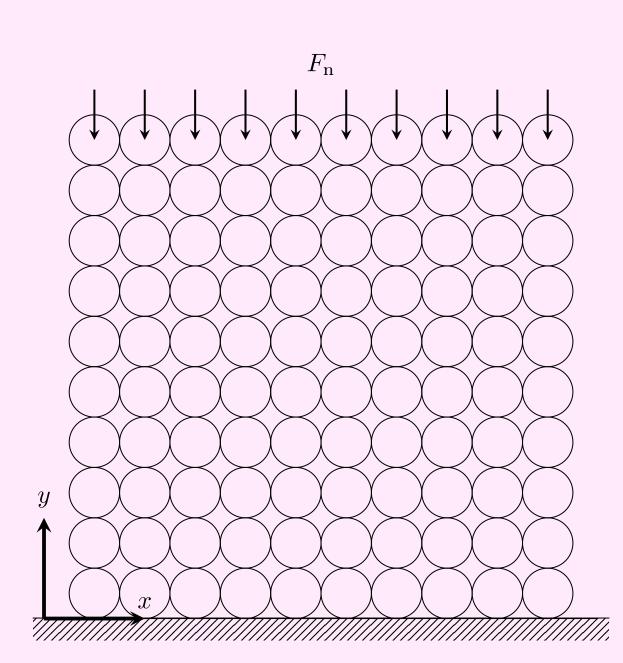
Background

- Sea ice deforms along lines called linear kinematic features (LKFs).
- Continuum models need either high resolutions (<10km) or parameteriza tions to reproduce the observed statistical metrics of LKFs.

Goal: improving the representation of LKFs

LKFs enable large energy fluxes between the atmosphere and the ocean.

- Shear, divergence, and convergence
- Damage and healing
- Dilation


Pack ice dislocating in the Beaufort Sea. Credit: NASA Worldview Snapshots.

- 1. Develop a new discrete element model for the pack ice.
- 2. Use GODAR to parameterize dilation along LKFs in shear.

Granular flOes for Discrete Arctic Rheology (GODAR)

- gregates.
- schemes are included.

Validation: elastic waves

GODAR can simulate the temporal evolution of contact normals between floes from which general equations relating dilation to resolved prognostic variables (normal/shear stress, open water fraction, floe size distribution) can be derived.

Take-home message

This presentation participates in OSP

candidate Presentation contest

