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A B S T R A C T

Offset tracking using synthetic aperture radar (SAR) amplitude imagery is a valuable technique for detecting 
large ground displacements. However, the traditional offset tracking methods with the SAR datasets are 
computationally intensive and require significant time for processing. We have developed a novel cross- 
connection Siamese ResNet (CC-ResSiamNet). The model leverages multi-kernel offset tracking for preprocess-
ing, followed by deep learning architectures that incorporate U-Net, cross-connections, and residual and atten-
tion blocks to predict pixel offsets between two SAR amplitude images. It is trained and tested on 200 K pairs of 
reference and secondary SAR amplitude images, alongside corresponding target offset data from Alaska’s gla-
ciers. The comparative analysis with multiple deep learning models confirmed that our designed model is highly 
generalizable, achieving rapid convergence, minimal overfitting, and high prediction accuracy. Through multi- 
scenario inference with glacier movements, earthquakes, and volcanic eruptions worldwide, the model dem-
onstrates strong performance, closely matching the accuracy of traditional methods while offering significantly 
faster processing times through parallel computing. The model’s rapid displacement mapping capability shows 
particular promise for improving disaster response and near real-time surface monitoring. While the approach 
encounters challenges in accurately capturing small-scale displacements, it opens new possibilities for SAR-based 
surface displacement prediction using machine learning. This research highlights the advantages of combining 
deep learning with SAR imagery for advancing geophysical analysis, with future applications anticipated as more 
commercial and scientific SAR missions launch globally.

1. Introduction

With its day and night imaging capabilities using long-wavelength 
radar (typically between 1 cm and 1 m), synthetic aperture radar 
(SAR) datasets have been widely utilized for monitoring the Earth’s 
surface from space and air regardless of weather conditions (Curlander 
and McDonough, 1991; Hanssen, 2021). Its applications include classi-
fying land use, civilian and military surveillance, mapping areas affected 
by disasters (e.g., floods, volcanoes, earthquakes, and landslides), and 
estimating ground deformation caused by anthropogenic activities (e.g., 
groundwater extraction and transportation construction) and natural 
events (Handwerger et al., 2019; Qu et al., 2015; Kim and Lu, 2021). In 
the past, spaceborne SAR missions such as Shuttle Radar Topography 
Mission (SRTM), TerraSAR-X, European Remote-sensing Satellite (ERS), 
Environmental satellite (Envisat), and Japanese Earth Resources 

Satellite (JERS) were conducted primarily by space agencies in only a 
few countries, including the United States, Germany, Europe, and Japan 
(Lu and Dzurisin, 2014). However, an increasing number of countries, 
such as Argentina, India, China, Spain, and South Korea, have recently 
aimed to launch their own or joint SAR missions for scientific, public, 
and surveillance purposes. Additionally, more commercial SAR satellites 
are being operated by companies to profit from selling images to public 
sectors (Castelletti et al., 2021; Ignatenko et al., 2020). With an 
expanding availability of SAR images and upcoming missions, SAR has 
gained popularity among scientists, government agencies, and the 
general public.

Ground displacement monitoring stands out as a primary objective 
among SAR’s myriad applications (Massonnet and Feigl, 1998), pivotal 
for enhancing our comprehension of Earth’s surface dynamics and 
bolstering disaster preparedness and response efforts. SAR datasets, each 
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pixel comprising complex values produced from signal processing of 
radar returns, yield two key outputs: phase and amplitude, crucial for 
gauging ground displacement (Rosen et al., 2000). Leveraging inter-
ferometric SAR (InSAR), which harnesses phase data of complex values 
in SAR datasets from multiple acquisitions to generate phase difference 
images (known as interferograms), yields highly precise estimates of 
displacement, often reaching centimeter-level accuracy across expan-
sive areas (Rosen et al., 2000; Lu and Dzurisin, 2014). The evolution of 
InSAR technologies, notably persistent scatterers (PS) and distributed 
scatterers (DS) methods (Berardino et al., 2002; Hooper et al., 2004; 
Ferretti et al., 2011), has significantly broadened its utility, enabling 
comprehensive mapping of ground subsidence in urban locales, tracking 
surface deformations induced by natural calamities like landslides 
(Samsonov and Blais-Stevens, 2024; Xia et al., 2024), earthquakes 
(Fathian et al., 2021), and volcanic activity (Tizzani et al., 2024), 
assessing infrastructure integrity (Hübinger et al., 2024), and estimating 
soil moisture fluctuations through non-zero phase triplets (Lu and Kim, 
2021; Lazecký et al., 2020; Michaelides et al., 2019). However, effective 
utilization of phase difference hinges upon the assumption of high InSAR 
coherence which requires minimal alterations in surface scattering 
characteristics between acquisitions. This assumption, however, can be 
easily compromised when surface conditions undergo significant alter-
ation surpassing InSAR’s decorrelation limit. In contrast to InSAR, which 
relies on phase difference, offset tracking (also known as incoherent 
speckle tracking) draws on amplitude correlation primarily from mul-
tiple acquisitions. Its fundamental premise is to trace the peak correla-
tion locations between SAR amplitude images, computed as two- 
dimensional offsets in both range and azimuth directions for radar co-
ordinates, and east-west and north-south directions for geocoded SAR 
images. Offset tracking offers a valuable technique for detecting large 
gradients of displacement induced by seismic activity (Fielding et al., 
2020), volcanic eruptions (Bato et al., 2021), landslides (Xu et al., 
2020a; Jia et al., 2020), and glacier movements (Strozzi et al., 2002; 
Feng et al., 2023), with an accuracy of sub-meter level depending on 
pixel size and correlation condition (Lu and Zhang, 2014). To achieve 
sub-pixel precision in displacement measurements, oversampling of 
input SAR amplitude images and cross-correlation via Fourier transform 
in the frequency domain are typically necessary for offset tracking 
measurement (Lei et al., 2021). However, both of these processing steps 
entail significant computational resources and can lead to slower pro-
cessing speeds. Generating a full-resolution offset map (window size 
>200) from a pair of a single burst coregistered single look complex 
Sentinel-1 (CSLC-S1) (dimension: 4800 × 20,000) takes approximately 
2 h even with the assistance of graphics processing unit (GPU) and 
parallel processing.

Deep learning, a subset of machine learning, has revolutionized 
problem-solving through artificial neural networks and algorithms 
inspired by the intricate structure and functionality of the human brain. 
With significant advancements in image recognition, language trans-
lation, and medical diagnosis, the scope of deep learning has expanded 
to include applications in natural language processing (Li, 2018), com-
puter vision (Lemley et al., 2017), healthcare (Miotto et al., 2018), and 
beyond (Najafabadi et al., 2015). In the domain of machine learning, a 
diverse array of algorithms and techniques including stochastic gradient 
descent and backpropagation constitutes the foundational processes that 
drive these innovations (Goodfellow et al., 2016).

Deep learning has been extensively applied in remote sensing, with 
significant advancements in key areas such as land use classification, 
change detection, and disaster assessment (Zhu et al., 2017). In partic-
ular, deep learning techniques have been utilized for image enhance-
ment through speckle noise reduction using convolutional neural 
networks (CNNs) and super-resolution methods (Lattari et al., 2019; 
Shen et al., 2020), as well as for object detection and classification tasks 
such as land cover classification and ship detection (Parikh et al., 2019; 
Li et al., 2022). Other applications include change detection for urban 
monitoring and disaster impact analysis (Saha et al., 2021; Wu et al., 

2023), multi-sensor fusion (Adrian et al., 2021; Hughes and Marcos, 
2020), and phase unwrapping (Spoorthi et al., 2020). These applications 
typically address two main prediction tasks: 1) classification, which uses 
supervised learning to categorize input data into predefined classes 
based on their distinctive features, and 2) regression, which predicts 
continuous values by modeling the relationship between input variables 
and outcomes (Zhang et al., 2023). Many remote sensing tasks have 
traditionally focused on binary classifications, such as distinguishing 
water from non-water areas or detecting changes vs. no changes, as well 
as multi-label classifications, such as identifying roads, lakes, and agri-
cultural fields from optical or radar satellite images, or fused data (Zhu 
et al., 2017). In contrast, regression tasks, though less common in remote 
sensing, present unique challenges due to the complexity of predicting 
continuous values over a wide range, unlike discrete class labels used in 
classification. While the deep learning approach was applied to estimate 
sub-pixel ground displacements from earthquake fault ruptures using 
optical satellite images (Montagnon et al., 2024), an important yet 
underexplored challenge in regression is estimating ground displace-
ment from SAR imagery—a vital but complex task in SAR data analysis. 
This study investigates the potential of deep learning techniques to es-
timate ground surface displacements from SAR imagery, utilizing offset 
tracking results as the basis.

Traditional methods like InSAR and offset tracking face challenges 
such as coherence loss and high computational demands, including 
time-frequency transformation, sub-pixel oversampling, and peak offset 
detection. To overcome these limitations, we propose an innovative 
deep learning regression model capable of measuring ground surface 
displacement instantaneously from SAR imagery. This approach aims to 
overcome the computational limitations of traditional methods while 
maintaining accuracy, potentially revolutionizing rapid displacement 
mapping for disaster response and Earth Science applications.

2. Methodology and implementation

This section outlines a comprehensive workflow for estimating 
ground displacement using deep learning methods applied to SAR im-
agery. Our approach integrates four key components: data preparation, 
segmentation, model architecture, and training and evaluation (Fig. 1). 
The process begins with the generation of CSLC-S1 bursts. We then apply 
a multi-kernel offset tracking algorithm to these bursts to estimate 
easting and northing offsets. These offset estimates, combined with SAR 
amplitude images, serve as input data for our deep learning models. 
Labeling the dataset in advance is a fundamental step in deep learning, 
as it enables the model to learn and predict offsets based on the provided 
ground truth. In this study, we assumed that the offset tracking results 
derived from SAR images serve as the true offsets. Although these results 
are not flawless and may include noise or errors, they provide a practical 
and consistent proxy for ground truth. This approach allows for dense 
and reliable offset estimates across large areas, which are essential for 
effectively training the deep learning model. Central to our methodology 
is a novel deep learning architecture specifically designed for ground 
displacement estimation. This model is trained to predict surface 
displacement using the prepared input data. We employ an iterative 
training process with multiple sets of input data to refine the model’s 
performance. Model outcomes are evaluated using unseen test sets to 
assess generalization and prediction accuracy. This evaluation process 
ensures the robustness and reliability of our approach. In the following 
subsections, we provide a detailed explanation of the specific method-
ologies, tools, and techniques applied at each step.

2.1. Data preparation

To ensure an ample and diverse dataset, we have chosen the obser-
vational products for end-users from remote sensing analysis (OPERA) 
CSLC-S1 as the primary data source for implementing our deep learning 
model. The burst-wise CSLC-S1 provides geocoded in universal 
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transverse Mercator (UTM) coordinates and co-registered SAR images 
achieved through geometric coregistration utilizing sensor orbit 
ephemeris, atmospheric models and digital elevation model (DEM) 
(Brancato, 2023). Sentinel-1’s precise orbit determination products 
obtained from Copernicus Data Space Ecosystem (https://dataspace. 
copernicus.eu), global ionosphere maps (GIM) from NASA’s crustal 
dynamics data information system (CDDIS; https://cddis.nasa.gov), and 
Copernicus GLO-30 DEM (https://spacedata.copernicus.eu/collections 
/copernicus-digital-elevation-model) is used. Additionally, various 
timing corrections, including Doppler-induced range shift correction, 
bistatic azimuth delay correction, and atmospheric delay correction, 
have been applied to achieve adequate geolocation accuracy (Gisinger 
et al., 2020). Moreover, the mass production of CSLC-S1 from European 
Space Agency (ESA)’s Sentinel-1 SLC standard archive format for Europe 
(SAFE) files is facilitated within a short time frame, thanks to the utili-
zation of GPUs embedded in the coregistered multi-temporal SAR SLC 
(COMPASS) software package (https://github.com/opera-adt/ 
COMPASS).

The research area encompasses Alaska, United States, and the 
neighboring Yukon Territory of Canada, featuring a multitude of 

dynamic glaciers (Fig. 2(a)). Furthermore, this region serves as a focal 
point for NASA’s making earth system data records for use in research 
environments (MEaSUREs) project, ITS_LIVE (https://its-live.jpl.nasa. 
gov), where Sentinel-1 datasets are being used to track glacier move-
ment. The correlation of SAR amplitude images for offset tracking can 
generally be highly sustained within a time frame of approximately two 
weeks. However, this correlation swiftly diminishes as the interval be-
tween two acquisitions increases (Kim et al., 2022). Therefore, we opted 
for CSLC-S1 acquisitions at 12-day intervals (shortest revisits for 
Sentinel-1 in Alaska), spanning from June to October, to mitigate the 
impact of snow cover effects in the region.

After generating the CSLC-S1 datasets using COMPASS software, we 
proceed to estimate two-dimensional offsets between reference and 
secondary SAR amplitude images. This is accomplished by identifying 
the location of maximum cross-correlation through a grid search of two 
patches within the amplitude images. Given that the sensitivity and 
measurement density of offset tracking results may vary depending on 
the dimension of template patches (referred to hereafter as kernel size), 
we employ a multi-kernel offset tracking approach (Chae et al., 2019). 
This method averages multiple offset tracking results obtained using a 

Fig. 1. Overview of the workflow for estimating ground displacement from Sentinel-1 SAR imagery using deep learning. The workflow consists of four main stages, 
data preparation, segmentation, model construction, and training and evaluation.
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range of kernel sizes, empirically selected from 96 to 230 with 32 in-
tervals in both east-west and north-south directions. For each kernel 
outcome, iterative median filtering is applied using three adaptive 
windows (7 × 7, 5 × 5, 3 × 3 in descending order) to smooth the offset 
results, while signal-to-noise ratio (SNR) thresholding is applied to 
remove outliers. Utilizing the GPU-powered PyCuAmpcor package 
(https://github.com/lijun99/cuAmpcor) facilitates efficient computa-
tion. With the optimal utilization of GPU cores, generating a full- 
resolution offset map from a pair of CSLC-S1 images takes between 
16 min to 2 h using the package, depending on the kernel size (96 and 
230, respectively).

To preserve the original pixel spacings (5 and 10 m in easting and 

northing, respectively) of CSLC-S1, offset estimation is performed at 
every pixel with a step size of 1 (e.g., Fig. 2(b, c)). To streamline the 
training process, we convert the offset estimation unit from meter to 
pixel. Although the offset tracking results retain the same dimensions as 
the input CSLC-S1 following this strategy, it is worth noting that the 
results may look noisier as offset tracking is conducted at every pixel. 
Maintaining the original pixel spacing from the input CSLC-S1 to the 
offset tracking results can ultimately aid deep learning methods in 
efficiently identifying spatial patterns, even if the offsets to be trained 
exhibit noise. Furthermore, the Randolph glacier inventory (RGI) 7.0 
dataset (RGI 7.0 Consortium, 2023), which outlines global glaciers and 
is compiled by the global land ice measurements from space (GLIMS) 

Fig. 2. (a) Burst-wise CSLC-S1 in Alaska and the Yukon Territory used for developing our deep learning model. The CSLC-S1s in red and blue rectangles are from 
descending and ascending tracks, respectively. (b, c) Exemplary sets of CSLC-1 reference and secondary amplitude images and corresponding offset tracking results in 
the easting and northing directions from descending and ascending tracks, respectively. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.)
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initiative, is employed to mask glacier regions from the offset tracking 
results. The original offset results for the Alaska areas encompass not 
only glacier movements but also displacements from adjacent topo-
graphic features, including mountain slopes, forests, and permafrost 
areas. While the major glaciers of Alaska, as delineated in RGI dataset, 
are located on the relatively gradual slopes, narrow valley glaciers 
interspersed with steep terrain are excluded from further training to 
reduce potential noise. These surrounding features are prone to geo-
metric distortions inherent in SAR imaging, such as layover, shadow, 
and foreshortening, and their surface changes are relatively small in size 
and magnitude. Our deep learning model is specifically designed to 
learn ground surface displacements, with the consistently flowing gla-
ciers providing the most reliable data for this purpose. By focusing on 
these large, more stable glacial features, we aim to reduce the impact of 
noise and SAR imaging artifacts, thereby improving the overall accuracy 
of our displacement estimation.

2.2. Data partitioning

The datasets, comprising reference and secondary SAR amplitude 
images along with their corresponding offsets in easting and northing, 
are partitioned into training/validation and test sets using a ratio of 0.8 
to 0.2. This split ratio is maintained for both the training and validation 
sets. The amplitudes of reference and secondary SAR imagery are con-
verted into decibel unit and normalized to [0,1]. Subsequently, 256 ×
256 chips of the amplitudes and offsets are cropped from pixel locations 
that encompass at least 90 % of glaciers, as determined by the glacier 
inventory. Because each chip consists predominantly of glacier areas, we 
can effectively reduce the effects of displacements and noise induced by 
neighboring surface features such as mountain slopes and permafrost. 
Our offset tracking method, implemented using windows across tens or 
hundreds of pixels, may inadvertently include unwanted displacements 
when estimating offsets in glaciers adjacent to bare earth slopes or other 
non-glacial features. However, masking the offsets with the RGI dataset 
remains the best available approach to mitigate such effects. Addition-
ally, to further reduce potential boundary effects during the training 
process, we apply a masking approach that excludes the outer 16 pixels 
along all edges (top, bottom, left, right) of the offset chips. Note that 16 
pixels is a conservative choice to mitigate artifacts caused by out-of- 
boundary offsets. Depending on the displacement characteristics, a 
larger number may be required for fast-moving displacements, while a 
smaller number may suffice for slow-moving displacements.

To address the imbalance issue arising from different look directions, 
we employed a balanced dataset comprising an equal number of offset 
tracking result pairs (248 pairs each) from both ascending (36 CSLC-S1s) 
and descending (43 CSLC-S1s) tracks (Fig. 2(a)). This approach ensures 
equitable representation of both orbital configurations in our analysis. 
Given the substantial volume of data, which exceeded available 
computational memory for simultaneous processing, we implemented a 
strategic partitioning protocol. The dataset was systematically divided 
into four discrete subsets, each structured as 32 K, 8 K, and 10 K samples 
for training, validation, and testing, respectively. This partitioning 
scheme adheres to standard deep learning practices, allocating 
approximately 64 % of the data for training, 16 % for validation, and 20 
% for testing. Such distributions ensure robust model development, 
effective hyperparameter tuning and unbiased performance evaluation. 
By maintaining consistent proportions across all subsets, we preserve the 
statistical properties of the original dataset while accommodating 
hardware limitations. This approach facilitates efficient data handling 
and promotes reproducibility in our experimental framework.

2.3. Deep learning model construction

In deep learning for remote sensing, an optimized neural network 
model is crucial for making accurate predictions on unseen data, high-
lighting the importance of selecting the right model for efficient 

performance and desired outcomes. The model is composed of multiple 
interconnected modules that process upstream inputs to generate out-
puts, which are then used for gradient descent optimization and learning 
of internal parameters. These modules and their interconnections are 
strategically designed to produce accurate offset predictions from the 
input SAR amplitude images.

2.3.1. Modules
Our model comprises three primary modules: residual, attention, and 

last convolution (Conv) block. Residual neural network (ResNet) can 
address the vanishing gradient problem with introducing skip connec-
tions that directly connect the input of a layer to the output, bypassing 
one or more intermediate layers (He et al., 2016). Our residual block 
proposed in this study (Fig. 3(a)), modified from the original ResNet, 
features a shared flow originating from two inputs (xin

1 , xin
2 ) given fn 

(number of filters: varying from 32 to 1024 in our model), followed by a 
concatenation layer, two Conv blocks (Conv2D with k (kernel size) =
(3,3), batch normalization (BN), activation), and one Conv block 
(Conv2D with k = (3,3), BN) without an activation layer. Each input 
undergoes a Conv block (with k = (3,3) or (1,1)), with the previous 
outputs added together to produce two outputs (xout

1 , xout
2 ). Swish func-

tion ( x
1+e− x) is chosen as the activation function in the residual blocks due 

to its superior performance compared to the rectified linear unit (ReLU). 
This residual block plays a fundamental role in our deep learning model, 
facilitating effective training using model inputs.

The attention mechanism in deep learning enables the model to 
selectively attend to pertinent aspects of the inputs and effectively 
capture their relative importance. Our attention block (Fig. 3(b)) in-
corporates both channel and spatial attention mechanisms (Woo et al., 
2018). Channel-wise attention focuses on discerning the meaningful 
channels within an input by applying max-pooing and average-pooling 
separately, followed by a multi-layer perceptron (Fig. 3(b)). The out-
puts of these pooing operations are then added and passed through an 
active layer with a sigmoid function ( 1

1+e− x). For an intermediate feature 
map F ∈ ℝH×W×C (H, W, C are height, width, and channel, respectively. 
In our model, (H, W, C) = (256,256,32)) as input, the output of the 
channel attention is ℝ1×1×C, which explores the inter-channel relation-
ship of features. Spatial attention, on the other hand, focuses on iden-
tifying informative spatial regions within the features. This is achieved 
by concatenating the results of max-pooling and average-pooling, fol-
lowed by a convolution layer (Conv2D with fn = 1, k = (7,7)) and an 
activation layer with a sigmoid function. For an intermediate feature 
map F ∈ ℝH×W×C as input, the output of spatial attention is ℝH×W×1, 
which leverages the inter-spatial relationship of features. Both channel 
and spatial attention mechanisms complement each other in inferring 
informative aspects from two distinct dimensions, channel and spatial 
(Woo et al., 2018), and are integrated into our attention block by 
multiplication with a convolution layer and a Conv block (including 
Conv2D with fn = 32, k = (1,1)), alongside ReLU (max(0, x)) activation 
functions.

The purpose of our last Conv block is to extract high-level features 
from the intermediate representations generated by preceding layers 
and prepare them for the final outputs of our deep learning model (Fig. 3
(c)). Following the application of a Conv block, which includes a 
Conv2D layers with fn = 32 and k = (1,1), along with a ReLU activation 
layer, the inputs undergo further processing. This involves the genera-
tion of two-channel outputs representing offsets in both easting and 
northing directions, achieved through a convolution layer with fn = 2 
and k = (1,1). Given that our model is designed for regression prediction 
and aims to map learnable features to a desired output space comprising 
floating-point values, the final output is produced without an activation 
layer (e.g., ReLU). All convolutional layers within the three primary 
blocks utilize strides of (1,1) and “same” padding to preserve the 
dimensionality of the inputs.
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2.3.2. Model architecture
We propose an efficient regression model composed of three primary 

modules: residual, attention, and last Conv blocks, based on the U-Net 
based Siamese architecture (Ronneberger et al., 2015; Zhan et al., 2017). 
For this model, we introduce a novel residual block and cross-connection 
approaches. Hence, we name the proposed model the cross-connection 
based Siamese ResNet (CC-ResSiamNet). The CC-ResSiamNet has an 
encoder and a decoder to process input reference and secondary 
amplitude images (256 × 256 × 1 chips) and produces output 2D offset 
maps in the easting and northing directions (224 × 224 × 2 chips).

The proposed model consists of six depth levels (see Fig. 4), each 
layer defined by different spatially sized convolution outputs, with two 
consecutive residual blocks applied at each depth using k = (3,3) and 
(1,1). In the encoder, the downsampling is applied by the max-pooling 
with strides of (2,2), resulting in dimensions of (W, H, fn) =

(256,256,32), (128,128,64), (64,64,128), (32,32,256), (16,16,512), and 
(8,81,024) at each depth, respectively. The encoder extracts features 
from the two input images. The decoder reverses the encoder’s process 
via the upsampling with strides of (2,2), ultimately restoring the original 
image dimensions to 256 × 256. Then, 16 pixels along the boundaries of 
the image are removed to reduce noise effects.

Similar to the original U-Net, outputs at each depth from the encoder 
are connected to the corresponding layer in the decoder through skip 
connections. However, our model introduces a modification: the two 
outputs from the residual block are interchanged and serve as new in-
puts to the residual block at the same depth in the decoder, facilitated by 
a concatenation layer with upsampled inputs from the previous depth. 
This altered skip connection, termed the “cross-connection”, not only 
facilitates the identification of spatial differences between the two in-
puts but also helps mitigate the vanishing gradient problem (Fig. 3). The 

Fig. 3. Three primary modules for our deep learning model: (a) Residual, (b) Attention, and (c) Last Conv block.

Fig. 4. CC-ResSiamNet proposed in this study. Two reference and secondary images are input to the model, undergo three primary modules (residual, attention, last 
Conv blocks) with concatenation layers and cross connection, and produce two-channel offset outputs.
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outputs from the decoder undergo concatenation before passing through 
the attention and last Conv blocks to generate 2D offset maps. The final 
output of our model has dimensions of 224 × 224 × 2, with each channel 
representing offsets in the easting and northing directions. Our model 
encompasses 160,876,395 trainable parameters, consisting of weights 
and biases, with all weights initialized using the He normal initialization 
method (He et al., 2015).

2.4. Training and evaluation

We configure the hyperparameters, setting the learning rate to 
0.0001 and the batch size to 50. For the loss function, we opt for the 
mean absolute error (MAE), which computes the average absolute dif-
ference between actual and predicted values in the dataset (Zhang et al., 
2023). This metric provides insight into the proximity of regression 
predictions to the actual offset tracking values. We employ the adaptive 
moment estimation (Adam) optimizer to aid in minimizing the loss 
scalar value through gradient descent and backpropagation across 
epochs.

During the training process, our CC-ResSiamNet model ingests pairs 
of reference and secondary images as input. These images are processed 
through three primary modules: residual blocks, attention mechanisms, 
and final convolutional layers. The model’s architecture incorporates 
concatenation layers and cross-connections between these modules, 

allowing for effective feature extraction and comparison between the 
image pairs. As the model iterates through epochs, it learns to predict 
two-channel offset outputs, which represent the spatial displacement 
between the reference and secondary images. The Adam optimizer ad-
justs the model’s parameters based on the computed MAE loss, gradually 
improving the network’s ability to accurately track offsets. This training 
approach enables the model to learn robust features and relationships 
between image pairs, preparing it for effective performance on unseen 
test data.

To address computational constraints and memory limitations, we 
implement an iterative training strategy. Instead of processing the entire 
dataset simultaneously, we divide it into four balanced subsets, each 
containing approximately equal numbers of training, validation, and 
test sets. The model is trained iteratively on these subsets, with a rota-
tion occurring every 25 epochs. This approach not only circumvents 
memory constraints but also enhances the model’s robustness by 
exposing it to diverse data distributions throughout the training process. 
By cycling through different subsets, we ensure that the model learns 
from a wide range of examples, potentially improving its generalization 
capabilities and mitigating overfitting risks.

Both training and evaluation procedures employ the same model 
architecture; however, during evaluation, a feed-forward processing 
approach is adopted without mini-batch gradient descent and back-
propagation. Instead, the trained model parameters, including weights 

Fig. 5. Evaluation with test sets. Through a feed-forward process that inputs the two CSLC-S1 amplitude images, offsets in the easting and northing directions are 
produced. The predicted offsets exhibit a high degree of similarity to the actual offsets.
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and biases in the residual, attention, and last Conv blocks, are utilized. 
Consequently, when two randomly assigned reference and secondary 
amplitude images are inputted into the model, the 256 × 256-sized 
images undergo a forward pass through the trained model, resulting in 
two-channel outputs representing offsets in the easting and northing 
directions. Evaluation results indicate a high degree of similarity be-
tween the predicted offsets generated by the deep learning model and 
the actual offset tracking results (Fig. 5). Despite the absence of distinct 

visual “displaced” surface features, our model has managed to produce 
offset predictions closely aligned with the actual offsets. It is worth 
noting that the offset tracking results were generated via correlation 
calculations at a 1 × 1 step in both the easting and northing directions, 
potentially introducing more noise. The validation with test sets sug-
gests that our model has successfully learned the intricate relationship 
between reference and secondary amplitude images, enabling accurate 
calculation of pixel offsets at the highest resolution. Additionally, using 

Fig. 6. Deep learning models used for comparative analysis. (a) SiamFCN, (b) SiamDeepLab, (c) SiamUNet, and (d) SiamResNetEncDec.
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the proposed and trained deep learning model, generating offset maps 
from approximately 10 K 256 × 256 chips of CSLC-S1 pairs takes only 
1.6 min. This demonstrates that, once the CC-ResSiamNet is trained, we 
can measure ground surface displacements instantaneously, bypassing 
the extensive processing time required by traditional offset tracking 
methods.

3. Comparison with other deep learning models

To assess the effectiveness of our proposed CC-ResSiamNet, we 
conduct a comparative analysis against multiple deep learning models. 
It is important to note that the application of deep learning for ground 
displacement estimation using SAR images represents a novel approach 
in the field. Given the unprecedented nature of our method, there are no 
directly comparable deep learning models tailored to our specific pur-
pose. To address this gap and establish a meaningful benchmark, we 
have designed and implemented four distinct deep learning architec-
tures, including Siamese Fully Convolutional Network (SiamFCN), Sia-
mese DeepLab (SiamDeepLab), Siamese U-Net (SiamUNet), and Siamese 
ResNet Encoder-Decoder (SiamResNetEncDec). Each of these models is 
configured to process two SAR amplitude image inputs and generate 
two-channel offset outputs, mirroring the input-output structure of our 
CC-ResSiamNet. Consequently, this comparative framework allows us to 
evaluate the relative performance of our proposed model within the 
context of contemporary deep learning approaches.

3.1. Architectural designs for comparable deep learning models

The following contemporary deep learning models are used for 
comparative analysis: 

• The SiamFCN, primarily composed of a series of convolutional 
layers, is structured with two identical input branches, each designed 
to process a SAR amplitude image (Fig. 6(a)). These branches consist 
of multiple convolutional layers that work to extract features from 
the input images. Subsequently, after independent feature extrac-
tion, the two branches merge, allowing the network to compare and 
combine the information from both inputs. This merged represen-
tation then passes through additional convolutional layers, which 
further refine and integrate the features. Finally, the network cul-
minates in a final convolutional layer that produces a two-channel 
output, likely representing the estimated displacement in two 
dimensions.

• The SiamDeepLab architecture (Fig. 6(b)) builds upon the DeepLab 
model, which was originally developed for semantic image seg-
mentation (Chen et al., 2018). Like the SiamFCN, it features two 
identical input branches for processing SAR amplitude images but 
incorporates specialized components for enhanced feature extrac-
tion. Each branch incorporates convolutional layers followed by 
atrous (dilated) convolutions. Notably, atrous convolutions allow the 
network to capture wider spatial context without increasing the 
number of parameters. After the initial feature extraction, the 
branches merge, and the combined representation undergoes further 
processing through additional atrous convolutions. A key feature of 
this model is the inclusion of an atrous spatial pyramid pooling 
(ASPP) module, which captures multi-scale contextual information. 
Ultimately, the network concludes with upsampling to restore spatial 
resolution and a final convolutional layer to produce the two- 
channel output.

• The SiamUNet model employs two identical U-Net-style branches, 
one for each SAR amplitude image input (Fig. 6(c)). Each branch 
follows the characteristic U-shaped architecture of U-Net, consisting 
of an encoder path for downsampling and a decoder path for 
upsampling. In this structure, the encoder progressively reduces 
spatial dimensions while increasing feature depth, capturing hier-
archical features. The decoder then gradually restores spatial 

resolution. A crucial aspect of this architecture is the use of skip 
connections, which directly connect corresponding levels of the 
encoder and decoder. These connections allow the decoder to 
leverage both high-level semantic information and low-level spatial 
details. Subsequently, after individual processing, the outputs of 
both branches are merged, and a final convolutional layer generates 
the two-channel output.

• The SiamResNetEncDec architecture incorporates elements from 
ResNet into an encoder-decoder framework (Fig. 6(d)). It starts with 
two identical branches, each processing one of the SAR amplitude 
images. The initial layers of each branch consist of convolutional 
operations and max-pooling, reducing spatial dimensions. At the 
core of the encoder are multiple residual blocks, a hallmark of ResNet 
architectures (He et al., 2016). These blocks allow for very deep 
networks by using skip connections to mitigate the vanishing 
gradient problem. In the decoder path, upsampling operations are 
used to restore spatial resolution, complemented by skip connections 
from the encoder. These connections help preserve fine-grained 
spatial information. After independent processing in each branch, 
the decoded features are merged. The network then concludes with 
final convolutional layers to produce the desired two-channel 
output.

3.2. Comparative analysis

To ensure a fair comparison of multiple deep learning models, we 
implemented a standardized evaluation framework. This approach in-
cludes: 1) Utilizing identical datasets and data splits for training and 
testing across all models, 2) Applying consistent pre-processing tech-
niques to SAR amplitude images, 3) Maintaining uniform input image 
sizes for all models, 4) Standardizing hyperparameters, including 
learning rate and mini-batch size, across all models, 5) Training each 
model for a fixed duration of 200 epochs, and 6) Employing the same 
MAE loss function for all models. Based on the training, validation, and 
testing of all models, their performance is compared by examining the 
learning curves and error histograms.

3.2.1. Comparison of learning curves
Comparative analysis with learning curves for multiple deep learning 

models, specifically CC-ResSiamNet, SiamFCN, SiamDeepLab, SiamU-
Net, and SiamResNetEncDec, presents each model’s performance and 
generalization capabilities (Fig. 7). Among the models analyzed, CC- 
ResSiamNet demonstrates superior performance. It exhibits the lowest 
training loss, rapidly converging and maintaining the low loss 
throughout the training process. Notably, its validation loss is also 
among the lowest, indicating excellent generalization to unseen data. 
This combination of low training and validation losses suggest that CC- 
ResSiamNet achieves the best balance between fitting the training data 
and generalizing to new instances. SiamResNetEncDec emerges as the 
second-best performer, closely following CC-ResSiamNet. While its 
training loss is marginally higher, it maintains a validation loss com-
parable to CC-ResSiamNet. This performance indicates good general-
ization capabilities, albeit slightly less efficient in minimizing training 
error compared to CC-ResSiamNet. SiamFCN and SiamUNet display 
moderate performance levels. Both models show higher validation losses 
compared to CC-ResSiamNet and SiamResNetEncDec, with SiamFCN 
exhibiting slightly higher validation loss than SiamUNet. These results 
suggest that while both models learn from the training data, they many 
not generalize as effectively to new, unseen examples. SiamDeepLab 
presents a unique case in this comparison. Despite competitive perfor-
mance in terms of training loss, it exhibits the highest validation loss 
among all models. This substantial discrepancy between training and 
validation performance is indicative of overfitting, a common challenge 
in machine learning where a model performs well on training data but 
fails to generalize to new, unseen data.

The phenomenon of overfitting is particularly evident in the learning 
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curves of SiamDeepLab. The large and persistent gap between its 
decreasing training loss and high, unstable validation loss is a classical 
sign of a model that has overfit to the training data. In contrast, CC- 
ResSiamNet and SiamResNetEncDec show minimal signs of over-
fitting, with small gaps between their training and validation losses, 
indicating robust generalization. SiamFCN and SiamUNet fall between 
these extremes, showing moderate overfitting with noticeable, but not 
severe gaps between training and validation losses.

3.2.2. Comparison of error histograms
The error histogram (Fig. 8) calculated by difference of offset results 

from both traditional offset tracking and deep learning prediction (dis-
tribution of errors in easting and northing directions) can offer a detailed 
view of the five models’ performance on test sets. The CC-ResSiamNet 
model continues to demonstrate the best performance among all 
models with the smallest root mean square error (RMSE) less than 0.03 
pixels (Fig. 8(a)). Its error distribution is tightly centered around zero for 
both easting and northing, with the highest peak and narrowest spread. 
The mean error lines are almost perfectly aligned with zero (both along 
− 0.001), indicating not only high precision but also exceptional accu-
racy with minimal systematic bias. SiamFCN shows a wider error dis-
tribution compared to CC-ResSiamNet (Fig. 8(b)). The spread of errors is 
larger, particularly in the easting direction. The mean errors reveal a 
slight bias, especially in the easting direction where the line is visibly 
offset from zero. This indicates that while the model’s predictions are 
less precise than CC-ResSiamNet, they also tend to have a small sys-
tematic error. SiamDeepLab exhibits the widest error distribution 
among all models (Fig. 8(c)). This is noticeable both in the easting and 
northing direction. The mean errors show significant offset from zero, 
indicating a pronounced systematic bias. This aligns with the overfitting 
behavior observed in the learning curves, suggesting that SiamDee-
pLab’s performance on unseen data is indeed problematic. SiamUNet 
presents an error distribution that is narrower than SiamDeepLab but 
wider than CC-ResSiamNet (Fig. 8(d)). Its mean error lines show a slight 
offset from zero, indicating the presence of a small systematic bias in its 
predictions. SiamResNetEncDec displays an error distribution that is 

comparable to SiamUNet in terms of spread (Fig. 8(e)). Its mean errors, 
particularly in the northing direction, show noticeable offset from zero 
and it may have a slight systematic bias in the prediction.

Comparative analyses using learning curves and histograms reveal 
that CC-ResSiamNet is the most effective model among those studied. It 
exhibits superior performance with rapid convergence in both training 
and validation, maintaining low losses and minimal overfitting. This 
suggests a strong ability to generalize to new data, high precision, and 
low potential biases. The model also shows a well-contained spread of 
random errors (as indicated by the error distribution) and minimal 
systematic error (with the mean error close to zero).

4. Multi-scenario inference and validation

The CC-ResSiamNet was trained on data from Alaska’s glaciers 
(Fig. 9), which exhibit distinct characteristics in terms of topography, 
climate, and ice dynamics. Glacier surface displacement is primarily 
driven by ice flow and melt, influenced by factors such as temperature, 
precipitation, and underlying topography. Applying our model to 
diverse geographic locations and disaster scenarios can be considered 
extrapolation, as it involves out-of-distribution prediction beyond the 
parameters learned during training. However, it is crucial to acknowl-
edge the practical limitations of training on an exhaustive global dataset. 
Our deep learning approach offers a pragmatic solution by focusing on 
glacier movements derived from pairs of SAR amplitude images in 
Alaska, which effectively capture ground displacement or pixel shifts 
between image acquisition times. This workable model opens up pos-
sibilities for cross-domain applications, potentially mitigating a degree 
of domain shift. While not a perfect solution, it may represent a step 
toward developing more versatile and adaptable Earth observation 
tools.

To evaluate the model’s performance, we applied our trained model 
to estimate ground displacement across three distinct groups (Fig. 9): 1) 
Glaciers in different geographic locations, 2) Earthquake-affected re-
gions, and 3) Volcanic areas where the ground surface displaced suffi-
ciently to be measured by SAR images. Importantly, the single scenes 

Fig. 7. Learning curve of training and validation losses for CC-ResSiamNet, SiamFCN, SiamDeepLab, SiamUNet, and SiamResNetEncDec.
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used for inference in these areas were not included in updating model 
parameters during training, validation, or testing phases. Consequently, 
we can assert that the datasets in these areas are truly novel and unseen, 
providing a rigorous test of the model’s generalization capabilities. This 
multi-scenario validation approach allows us to assess the robustness 

and versatility of the CC-ResSiamNet in estimating ground displacement 
across various geological contexts and event types.

Fig. 8. Error histograms of (a) CC-ResSiamNet, (b) SiamFCN, (c) SiamDeepLab, (d) SiamUNet, and (e) SiamResNetEncDec. Dashed lines represent the mean error 
values of each distribution.
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Fig. 9. Locations for multi-scenario inference and validation with our deep learning model. The model was trained on Alaska’s glaciers (red star) and used for 
inferencing ground displacement in glaciers, earthquakes, and volcanoes around the world (red dots). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 10. Workflow of inference processes. Offsets in the easting and northing directions over the region of interest are predicted using reference and secondary 
CSLC-S1s.
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4.1. Inference processes

The data used for inference includes CSLC-S1 files generated by the 
COMPASS software from Sentinel-1 SAFE files, along with precise orbit 
data, GLO-30 DEM, and GIM. Unlike the training process, which uses 
single bursts, multiple bursts are merged to cover the entire area of in-
terest for target glaciers, earthquakes, and volcanoes. This merging en-
sures that all bursts share the same European Petroleum Survey Group 
(EPSG) codes. If the bursts are located in different UTM zones, they are 
reprojected into a common UTM zone, while maintaining the original 
pixel spacing of 5 and 10 m in the easting and northing directions, 
respectively (Fig. 10). The coverage of these merged multi-burst input 
images is slightly larger than the actual region of interest, so the input 
normalized SAR amplitude images are cropped to the smaller size for 
computing efficiency.

During the training of our deep learning model, inputs were 
composed of 256 × 256 chips. However, the real-world data contains 
irregular shapes. To apply the trained model to SAR amplitude images, 
we divide the images into multiple 256 × 256-sized patches with 
overlaps and geoinformation (EPSG code, geotransform composed of 
origin coordinates and rotation angles), ensuring no image parts are 
omitted (Fig. 11). Each patch is processed by our trained model, pro-
ducing two-channel offset maps. After applying 16-pixels zero padding 
along the edges, these patch offset maps are then stitched into a single 
two-channel offset map, using each patch’s geoinformation in UTM 
coordinates and applying water or glacier masking, with overlaps 
weight-averaged. The stitched offset maps represent the final prediction 
of our deep learning model, which will be compared against the results 
obtained from traditional offset tracking method.

4.2. Glaciers in different geographic locations

4.2.1. Tien Shan glaciers in China
The Tien Shan, one of the world’s largest mountain ranges, extends 

approximately 2500 km across Central Asia (Fig. 9). Glaciers and ice 
caps in these high mountains serve as crucial “water towers”, providing 
meltwater to semi-arid regions with seasonal water scarcity. These areas 

include Kazakhstan, Kyrgyzstan, Uzbekistan, and China’s northwestern 
Xinjiang Uyghur Autonomous Region (Farinotti et al., 2015). From 1960 
to 2021, Tien Shan glaciers have undergone significant shrinkage, with 
an estimated 27 % loss in glacier mass since the 1960s. This retreat has 
accelerated in recent years, coinciding with a temperature increase of 
about 0.7 ◦C per decade in parts of the Tien Shan region (Zhuang et al., 
2023). Efforts have been made to assess glacier dynamics, including the 
measurement of glacier velocity (Millan et al., 2022) and the estimation 
of mass loss (Farinotti et al., 2015). Our research applies a trained deep 
learning model to estimate the velocity of a selected glacier in the Tien 
Shan Mountains.

We utilized both ascending (P136) and descending (P158) track 
datasets to estimate glacier velocity in the easting and northing di-
rections over the same area (red polygon in Fig. 12). Our prediction is 
based on CSLC-S1s obtained on 2018/08/07 and 2018/08/19 (P136) 
and 2019/06/04 and 2019/06/16 (P158), providing a 12-day interval 
dataset. The results show high similarity with those independently 
produced by a traditional offset tracking method; specifically multi- 
kernel offset tracking. The RMSE for P136 is 0.178 pixels in the 
easting direction and 0.188 pixels in the northing direction, while for 
P158, it is 0.205 pixels in the easting direction and 0.209 pixels in the 
northing direction. The glacier is situated in an elongated, narrow val-
ley, and the measured or predicted offsets may be influenced by the 
steep mountains on the northern and southern sides. Despite these po-
tential confounding factors, our trained deep learning model success-
fully captured the primary eastward glacier movements and, to a certain 
degree, the secondary northward glacier velocity.

4.2.2. San Quintin glacier in Chile
San Quintin Glacier, the largest outlet glacier of the Northern Pata-

gonian Ice Field, is situated within Laguna San Rafael National Park in 
southern Chile (Fig. 9). This glacier flows westward from the Patagonian 
Glacier Plateau toward the low-lying, swampy Isthmus of Ofqui 
(Copernicus EU, 2021; Brockmann Consult, 2023). Over the past 30 
years, San Quintin has undergone a rapid retreat, with particularly 
significant changes observed since 1991. As the glacier recedes, it has 
contributed to the formation of a rapidly expanding proglacial lake at its 

Fig. 11. Strategy for patching and stitching images. The input image is divided into 256 × 256 patches with a minimum overlap of 64 pixels. Each patch includes 
geoinformation (EPSG code, geotransform) to facilitate stitching in UTM coordinates. The trained deep learning model produces offsets in the easting and northing 
directions. After applying zero padding along the edges, these offsets are stitched into a single offset map, with overlaps weight-averaged to ensure consistency.
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Fig. 12. Tien Shan glacier outlined by RGI datasets (dashed, cyan lines) and the coverage of the datasets (red polygon) used for estimating glacier velocity. This 
figure presents three columns for each dataset (P136, P158), glacier velocity estimated by traditional offset tracking, velocity predicted by the deep learning model, 
and residual (actual – predicted offsets). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. San Quintin glacier outlined by RGI datasets (dashed, cyan lines) and the coverage of the datasets (red polygon) used for estimating glacier velocity. This 
figure presents three columns for each dataset (P083, P135), glacier velocity estimated by traditional offset tracking, velocity predicted by the deep learning model, 
and residual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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terminus, potentially making San Quintin Glacier Lake the fastest- 
growing lake in South America during the 21st century (Copernicus 
EU, 2021). The glacier’s retreat was also documented through satellite 
imagery between 1996 and 2000 (Harrison et al., 2001). As part of 
global glacier velocity assessments, San Quintin was included in a recent 
study on ice dynamics (Millan et al., 2022). In this research, we applied a 
deep learning model to estimate the glacier’s velocity.

Using CSLC-S1 datasets from the descending (P083) and ascending 
(P135) tracks, we predicted the glacier’s velocity in both the easting and 
northing directions over the same region (depicted by the red polygon in 
Fig. 13). The data spanned 12-day intervals, covering 2020/09/03 to 
2020/09/15 for P083 and 2018/11/10 to 2020/11/22 for P135. Our 
predictions aligned well with the glacier velocities measured by tradi-
tional offset tracking methods (Fig. 13). The RMSE for P083 was 0.343 
pixels in the easting direction and 0.324 pixels in the northing direction, 
while for P135, the RMSE was 0.307 pixels in the easting direction and 
0.275 pixels in the northing direction. Although these RMSE values are 
larger than those observed for the Tien Shan Glaciers, the discrepancy is 
likely acceptable due to the presence of more pixels with larger glacier 
velocities approaching − 1 and 1 shifts. Similar to the Tien Shan Glaciers, 
the overall pattern of glacier movements in the easting and northing 
directions closely matched between our predictions and the traditional 
offset tracking method.

4.3. Earthquake-affected regions

4.3.1. Ridgecrest earthquake, California, USA
The 2019 Ridgecrest earthquakes in Southern California, including 

the main Mw 7.1 tremor on July 5, 2019, and numerous aftershocks, 
significantly affected the town of Ridgecrest. These earthquakes 
ruptured two conjugate faults in the Airport Lake fault zone and Little 
Lake fault zone, oriented roughly northwest-southeast and northeast- 
southwest, respectively. Coseismic displacements were measured using 
InSAR and offset tracking methods with Sentinel-1 datasets (Xu et al., 

2020b). Our deep learning model was applied to the CSLC-S1 datasets 
from the ascending (P064) and descending (P071) tracks, predicting 
ground displacement over a 6-day interval (2019/07/04 to 2020/07/ 
10) for P064 and a 12-day interval (2019/07/04 to 2020/07/16) for 
P071. The model’s predictions closely matched traditional offset esti-
mation methods (Fig. 14), with RMSE values of 0.094 pixels (easting) 
and 0.120 pixels (northing) for P064, and 0.093 pixels (easting) and 
0.117 pixels (northing) for P071. While our model slightly un-
derestimates the overall ground displacement and produces less 
detailed, smoothed displacement compared to the offsets from tradi-
tional methods, the earthquake-induced ruptures are clearly identifiable 
and consistently located across different SAR look directions.

4.3.2. Türkiye earthquake
The devastating 2023 Türkiye earthquake sequence began on 

February 6, 2023, with an initial Mw 7.8 shock followed by a Mw 7.7 
aftershock approximately nine hours later (Fig. 9). Both seismic events 
occurred along the East Anatolian Fault in southeastern Türkiye, near 
the Syrian border, with the epicenter located close to the Turkish city of 
Kahramanmaraş (An et al., 2023). Researchers have employed InSAR 
and offset tracking techniques using Sentinel-1 and Sentinel-2 data to 
measure ground surface displacements across the affected regions (He 
et al., 2023). We applied our deep learning model to CSLC-S1 datasets 
from ascending (P014) and descending (P021) tracks to predict surface 
displacements over slightly different regions (red and blue polygons in 
Fig. 15, respectively). The model successfully captured the overall 
displacement pattern (Fig. 15) using 12-day interval data from 2023/ 
01/28 to 2023/02/09 (P014) and 2023/01/29 to 2023/02/10 (P021). 
The RMSE for P014 was 0.241 pixels in the easting direction and 0.284 
pixels in the northing direction, while for P021, it was 0.250 pixels and 
0.285 pixels, respectively. Our predictions of rupture locations, clearly 
visible from offsets in the easting direction, closely match those obtained 
through traditional offset tracking (Fig. 15). However, our model 
slightly underestimated displacements in the northernmost part of the 

Fig. 14. Ridgecrest area where 2019 earthquakes struck on July 5, 2019, and the coverage of our dataset (red polygon) used for predicting ground displacement. This 
figure presents three columns for each dataset (P064, P071), ground displacement by traditional offset tracking, velocity predicted by the deep learning model, and 
residual. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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affected area.

4.4. Volcanic areas

4.4.1. Taal volcano, Philippines
Taal Volcano, located in southwestern Luzon, Philippines, 

approximately 60 km south of Manila (Fig. 9), is nestled within a large 
caldera filled by Taal Lake. The volcano itself is situated on Volcano 
Island, positioned in the middle of this lake (Moore et al., 1966). On 
January 12, 2020, Taal Volcano erupted, generating ash plumes, vol-
canic lightning, and lava fountains, leading to the evacuation of nearby 
villages and affecting over 500,000 people. InSAR and offset tracking 

Fig. 15. Regions affected by the 2023 Türkiye-Syria earthquakes on February 6, 2023, with the red and blue polygons representing the dataset coverage area (P014 
and P021, respectively) used for ground displacement prediction. The figure consists of three columns for each dataset (P014, P021): ground displacement estimated 
using traditional offset tracking, velocity predictions from the deep learning model, and the residual between the two methods. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Taal volcano, Philippines erupted on January 12, 2020, with the red polygon representing the dataset coverage area use for ground displacement prediction. 
The figure consists of three columns for each dataset (P032, P142): ground displacement estimated using traditional offset tracking, velocity predictions from the 
deep learning model, and the residual between the two methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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techniques were employed to analyze the eruption (Bato et al., 2021), 
while our deep learning model successfully predicted surface displace-
ment using CSLC-S1 datasets over 6-day intervals from 2020/01/09 to 
2020/01/15 (P032) and 2020/01/11 to 2020/01/17 (P142). Our pre-
dictions closely matched the traditional offset tracking measurements, 
with RMSE values for P032 being 0.169 pixels in the easting direction 
and 0.192 pixels in the northing direction, and for P142, 0.110 pixels in 
the easting and 0.197 pixels in the northing direction. Despite the 
complex terrain, dense vegetation, and the surrounding water body of 
Taal Lake (as shown in Fig. 16), our model effectively captured surface 
displacements in both easting and northing directions, irrespective of 
SAR viewing geometry.

4.4.2. Mauna Loa Volcano, Hawaii, USA
Mauna Loa, the Earth’s largest active volcano, is located on the Big 

Island of Hawaii. Its 2022 eruption marked the first activity in 38 years, 
with the previous eruption occurring in 1984 (Maher et al., 2023). The 
eruption began on November 27, 2022, and continued until December 
13, 2022, initially starting at the summit and later spreading to the 
Northeast Rift Zone (Moisseeva et al., 2023). To predict the ground 
displacements caused by the volcanic activity, we employed our trained 
deep learning model, utilizing 12-day interval CSLC-S1 datasets from 
two time periods: 2022/11/22 to 2022/12/04 (descending track P087) 
and 2022/11/25 to 2022/12/07 (ascending track P124). The RMSE for 
P087 was 0.049 pixels in the easting direction and 0.083 pixels in the 
northing direction, while for P124, the RMSE values were 0.051 pixels 
and 0.059 pixels, respectively. Although these small RMSE values re-
flected relatively small displacements around the summit compared to 
other cases, the volcanic displacements were not well captured partic-
ularly in the northing direction of the P087 track (Fig. 17). The predicted 
displacement pattern along the rift was similar, but most displacements 
were underestimated. Predictions for P124 showed better alignment 
with the results of traditional offset tracking methods, though the dis-
placements appeared smoothed and less detailed.

5. Discussion

Deep learning has become a powerful tool in satellite remote sensing, 
offering significant advantages such as enhanced accuracy in image 
classification, object detection, and segmentation (Ma et al., 2019). It 
also excels in managing large datasets and demonstrates resilience to 
noise, including atmospheric effects (Wang et al., 2022). However, its 
applications have primarily been focused on classification tasks and 
disaster monitoring, such as mapping areas impacted by floods or 
wildfires (Zhu et al., 2017). This study suggests the new application of 
deep learning in radar satellite remote sensing by demonstrating its ef-
ficacy in estimating ground displacement through regression-based 
predictions. The combination of U-Net and ResNet has shown strong 
performance in change detection tasks when used in a Siamese structure 
with two input images (Zhan et al., 2017). Leveraging the characteristic 
cross-connections that enhance change detection, we designed our deep 
learning model, CC-ResSiamNet, based on these two architectures, 
incorporating an additional attention block and a convolutional block 
for more accurate regression outputs.

In deep learning, identifying appropriate datasets for training a 
model is crucial. To predict ground displacements from SAR images, we 
require datasets over consistently shifting surfaces that offer both suf-
ficient quantity and quality. While earthquakes and volcanic activity 
displace large areas, the episodic nature of these events makes it difficult 
to gather sufficient data for effective model training. In contrast, 
consistently flowing glaciers provide an ideal training dataset. The 
spatial variations within glaciers, along with their pixel shifts caused by 
surface displacement, are detectable in SAR amplitude images. Addi-
tionally, CSLC-S1 is the best available data source, as it bypasses time- 
consuming coregistration with Sentinel-1 by utilizing geometry- 
driven, GPU-accelerated processing. Target offsets can be generated 
through multi-kernel offset tracking, which uses multiple windows to 
enhance results from different spatial perspectives. Approximately 200 
K pairs of 256 × 256 reference and secondary SAR image chips, along 

Fig. 17. Mauna Loa volcano, Hawaii, with the red polygon representing the dataset coverage area use for ground displacement prediction. The figure consists of 
three columns for each dataset (P087, P124): ground displacement estimated using traditional offset tracking, velocity predictions from the deep learning model, and 
the residual between the two methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

J. Kim et al.                                                                                                                                                                                                                                      Remote Sensing of Environment 318 (2025) 114577 

17 



with target offsets, were input into our deep learning model. Once the 
model is trained, predicting ground surface displacement from thou-
sands of amplitude image chips takes only minutes using GPU- 
accelerated parallel inference. Comparative analysis with several 
contemporary deep learning models revealed that CC-ResSiamNet out-
performed them all, exhibiting faster convergence in the learning curve, 
minimal overfitting, and higher prediction accuracy on the test sets.

Applying our trained model to different geographic regions and 
disaster scenarios presents a challenge, as deploying the model in 
entirely new areas or phenomena can result in significant domain shifts 
or extrapolation issues. Our inference results on glaciers in China and 
Chile, the Ridgecrest and Türkiye earthquakes, and the Taal and Mauna 
Loa volcanoes demonstrated that our trained model successfully pre-
dicted ground displacement when compared to independently produced 
traditional offset results. Although the predicted offsets tend to under-
estimate ground displacement in earthquake and volcanic events, the 
model accurately captured the overall displacement patterns and 
earthquake-induced ruptures. Several factors could explain why the 
model performed well in multi-scenario inferences: 1) Feature similarity: 
SAR images capture distinct characteristics of the Earth’s surface, and 
despite geographic differences, the key features indicating surface 
displacement may be similar across these scenarios. The model likely 
learned to detect these universal indicators rather than location-specific 
traits; 2) Scale invariance: The model’s architecture may have facilitated 
the development of scale-invariant features, enabling it to recognize 
patterns regardless of size, which is advantageous when handling 
different glacier sizes or varying scales of disaster impacts; 3) Sufficient 
training data: Our training datasets included a wide variety of glacier 
types, sizes, and movement patterns, which may have inadvertently 
prepared the model for diverse scenarios. This variety likely contributed 
to its robustness and generalization capability; and 4) Generalization of 
displacement patterns: The model may have learned to generalize 
displacement patterns rather than focusing on specific geographic fea-
tures, allowing it to perform well across various scenarios where similar 
displacement dynamics occur. To further validate the applicability and 
generalization of our trained deep learning model, a cross-regional 
analysis with more extensive datasets in varying geographic condi-
tions (e.g., earthquakes in tropical areas and volcanoes in arid regions) 
may be needed.

There remain various challenges in expanding the application of our 
deep learning model. The key to improving its performance lies in using 
more diverse training datasets. While training with 32 K samples over 
100 epochs can produce valuable outputs, with a validation loss below 
0.10 pixels, the limitations become evident during inference. Conven-
tional offset tracking methods have considered accuracies on the order 
of one-tenth of the SAR pixel spacing to be acceptable (De Zan, 2014). 
However, the benefits of using more diverse datasets are particularly 
noticeable during inference. For instance, training with a single 32 K 
sample set may yield acceptable accuracy for test sets from Alaska’s 
glaciers, but inference on the Tien Shan glaciers reveals issues, espe-
cially around boundary predictions. In contrast, iterative training with 
multiple datasets (32 K × 4) reduced these artifacts, leading to pre-
dictions more consistent with traditional offset results (Fig. 18). Diverse 
training datasets improve the model’s robustness in multi-scenario in-
ferences and help mitigate overfitting. Although our model shows 
relatively minor overfitting compared to others, its impact still cannot 
be entirely ignored. Adopting larger or more varied datasets, or refining 
the model itself, could further reduce overfitting. However, the chal-
lenge of gathering more extensive datasets remains, as it is both time- 
consuming and labor-intensive on a global scale. Additionally, our 
current computing resources, particularly memory, are insufficient to 
handle the larger datasets required for further improvements in pre-
diction accuracy. They are also inadequate for implementing more 
advanced deep learning algorithms, such as transformer-based models, 
which could potentially enhance our results beyond the capabilities of 
the current U-Net-based approach.

Future improvement in our deep learning model requires the esti-
mation of small-scale displacements. The training data for our model 
used a minimum window size of 96 pixels, as smaller windows produced 
low SNR and noisy results over glacial areas. However, this approach has 
a drawback: the smoothing effect of larger windows prevents our model 
from learning pixel shifts caused by minor ground displacements. 
Consequently, our current models and others may struggle to predict the 
small-scale landslides from SAR amplitude images.

To address this limitation and enable the prediction of landslide- 
induced displacements, it is essential to expand the training dataset 
with a significant volume of target offsets that capture smaller-scale 
movements. Obtaining a sufficient number of training samples to esti-
mate small-scale displacements in diverse geographic settings from SAR 
imagery using offset tracking can be challenging due to decorrelation 
limitations. To overcome this, generating synthetic and simulated 

Fig. 18. Comparison of inferred offset results in the easting and northing di-
rections from deep learning models trained on a single dataset (1st column) and 
multiple datasets (2nd column), alongside results from traditional offset 
methods (3rd column).
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displacements in different geometric configurations may be necessary to 
build adequate training datasets for deep learning models and improve 
prediction accuracy.

Although our model demonstrates strong performance across various 
scenarios, its accuracy may decrease in regions with complex terrain or 
noisy datasets, such as densely forested areas or steep mountain slopes. 
Future efforts could focus on integrating multi-source data, such as SAR 
from different sensors or fusion with optical imagery, to provide com-
plementary information for mitigating noise and improving prediction 
accuracy. Additionally, enhancing sample selection strategies by incor-
porating diverse geographic and surface conditions could further in-
crease the model’s adaptability and robustness.

6. Conclusion

We have developed a novel deep learning approach for monitoring 
ground displacement using CSLC-S1 amplitude images. Our training 
methodology, which utilizes randomly assigned SAR inputs and corre-
sponding offset outputs, highlights the critical role of a large, diverse 
dataset in achieving optimal performance and reducing overfitting. 
Evaluations on unseen test sets have produced promising results, 
showing a high degree of similarity between actual and predicted off-
sets. The model’s versatility has been demonstrated through multi- 
scenario applications, including glacier dynamics, earthquake-affected 
regions, and volcanic zones. These assessments confirm the model’s 
effectiveness in predicting ground surface displacements using a patch- 
wise prediction and stitching technique. Its capacity to generalize across 
different geographic locations and disaster events stems from the di-
versity of SAR datasets focused on glacier movements, allowing the 
model to adapt effectively to new environments. While there is room for 
improvement, particularly in handling small-scale displacements, 
expanding the global dataset, and developing time-series displacement 
predictions from multi-temporal SAR images using deep learning, our 
deep learning approach lays the groundwork for further research. With 
forthcoming spaceborne missions, such as NASA-ISRO SAR (NISAR) and 
Sentinel-1C/D, the demand for rapid and accurate ground displacement 
estimation through deep learning will continue to grow. This model 
offers a valuable framework for future developments in radar remote 
sensing and can serve as a benchmark for advancements in this field.
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