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A B S T R A C T

Spatial autocorrelation, the relationship between nearby samples of a spatial random variable, is often
overlooked in machine learning models, leading to biased results. This study compares various methods to
account for spatial autocorrelation when predicting soil organic carbon (SOC) using random forest models.
This kind of systematic comparison has not been done previously. Five models incorporating spatial structure
were compared against baseline models with no added spatial components. Cross-validation showed slight
improvements in accuracy for models considering spatial autocorrelation, while Shapley Additive Explanations
confirmed the importance of spatial variables. However, no decrease in spatial autocorrelation of residuals was
observed. Random Forest Spatial Interpolation emerged as the top performer in capturing spatial structure
and improving model accuracy. Raster-based models exhibited enhanced prediction detail. The findings
emphasize the value of incorporating spatial autocorrelation for better prediction of SOC with machine
learning. Considerations such as the spatial distribution of predictions and computational complexity should
help guide the selection of suitable approaches for specific spatial modelling tasks.
1. Introduction

Soil is essential to all life, as it supports the plants that generate
oxygen and supports the base of the food web. However, despite the
rapid growth of readily available remotely sensed data, soil properties
are difficult to map from space. At the same time, it is impossible
to study large areas by mapping in the field due to the high time
requirements and cost (Wadoux et al., 2019). Consequently, digital soil
mapping (predictive spatial modelling) is becoming an irreplaceable
tool for capturing the spatial variability of soil properties (Brungard
et al., 2015; Lamichhane et al., 2019).

Machine learning (ML), particularly Random forest (RF) models, are
the most widely used type in soil predictive modelling because they
are interpretable and fast (Duan et al., 2024; Wadoux et al., 2020a;
Heung et al., 2016). Unfortunately, most RF frameworks do not account
for certain distinctive properties of spatial data that set it apart from
other data types, especially the phenomenon of spatial dependence,
i.e., spatial autocorrelation (Sekulić et al., 2020; dos Santos et al.,
2023). Failure of the RF model to appropriately account for spatial
autocorrelation can undermine the modelling results (Nikparvar and
Thill, 2021). However, spatial autocorrelation also represents an oppor-
tunity in spatial RF modelling, especially if the modelled phenomena
exhibit strong environmental gradients; the RF algorithm can implicitly
learn from changes that occur along the geographical extent. However,
this also creates a problem: autocorrelation violates the assumption
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of sample independence (Dormann et al., 2007). Moreover, autocor-
relation can cause some covariates (features) to completely overpower
the predictive performance of other covariates and may even lead to
false conclusions about the relationships among environmental vari-
ables (Ploton et al., 2020). Therefore, it is extremely important to
explicitly consider spatial autocorrelation in spatial predictive RF mod-
els while also being able to separate the predictive power created by
autocorrelation from the predictive power of other covariates.

Several methods have been developed to account for spatial
patterns/spatial autocorrelation in supervised machine learning mod-
els. A common approach in the literature is to incorporate covariates
that capture spatial structure, like distances (Behrens et al., 2018), spa-
tial coordinates (Hengl et al., 2018), properties of neighbours (Sekulić
et al., 2020), etc., into the model data. Another approach is to add
another step to the prediction process: examples include creating
ensembles of local and global models (Georganos et al., 2021; Brunsdon
et al., 2010), or using ordinary kriging interpolation on ML training
data residuals to estimate an error term that can be incorporated into
testing predictions (Fox et al., 2020). However, Jemeljanova et al.
(2024) concluded in their recent review on adapting machine learn-
ing for environmental spatial data that there is no single systematic
approach for addressing spatial autocorrelation in machine learning
models in general. Applying several methods of incorporating spatial
autocorrelation to the same model and comparing their performance
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could provide valuable insights towards a better understanding of
hich method to choose in a particular situation. While existing litera-

ure suggests various methods for incorporating spatial autocorrelation,
here is no consensus on a single, comprehensive method that uniformly
mproves model performance across different scenarios Jemeljanova

et al. (2024) and Sarkar et al. (2024). Furthermore, the potential
enefits of comparing multiple methods of addressing spatial auto-
orrelation within the same model framework remain unexplored.
onsequently, research is needed to systematically evaluate different
pproaches to incorporate spatial autocorrelation and analyse their
ffectiveness in enhancing the predictive accuracy of soil organic
arbon models.

We aim to test different accounting methods for spatial autocorre-
lation in machine learning to identify which method would give the
best results for spatial modelling of soil organic carbon (SOC). To our
knowledge, this is the first study systematically evaluating the main
approaches to including autocorrelation in machine learning for SOC
mapping. With this study, we provide critical insights into selecting
appropriate methodologies for SOC spatial modelling tasks, ultimately
improving the reliability of soil predictive models.

2. Data and methodology

We employ a comprehensive approach to modelling soil organic car-
bon (SOC) across Estonia, utilizing the combination of soil, elevation,
land use, drainage, and normalized vegetation index data to capture
the spatial heterogeneity of SOC. For baseline models, we implement
two primary strategies: (1) a vector-based method that utilized the
Estonian soil map EstSoil-EH (Kmoch et al., 2021) polygons for training
and predicting SOC, and (2) a raster-based method where all original
raster covariates (including DEM derivatives, land use, and NDVI) were
maintained in raster format, while the covariates originating from
EstSoil-EH (i.e. digitized fine-earth and rock fractions) from the vector
polygons were converted to a 10-meter raster. We then augment the
raster baseline model with spatially aware techniques by incorporating
(1) sample coordinates, (2) k-nearest neighbours, (3) buffer distances,
(4) kriging of prediction residuals, and (5) geographically weighted
regression using localized random forest models for each sampling
point.

2.1. Data

2.1.1. Data and case study area
We used soil organic carbon field samples as the target variable

nd soil texture, elevation derivatives, land use, normalized vegetation
ndex, and drainage information as predictors. Soil Organic Carbon

We used soil organic carbon (SOC) measurements for Estonia (study
area) from three sources:

1. 472 samples from EstSoil-EH (Kmoch et al., 2021) that have
been collected from forest areas, open and overgrown grasslands
and alvars, peatlands and arable soil transects;

2. 194 samples from European Union LUCAS Land Use/Cover Area
frame Survey (LUCAS) (European Commission Joint Research
Centre, 2022) data for topsoil SOC. This topsoil survey repre-
sents the first attempt to build a consistent spatial database of
the soil cover across the EU based on standard sampling and
analytical procedures, with all soil samples being analysed in a
single laboratory;

3. 303 samples from a project Role of grasslands in mitigating climate
change (Helm, 2023)

Altogether, we used 969 samples to train and validate the machine
earning models (Fig. 1) which covered different main land use types

A.4.
Soil Data
2 
For soil data, we used EstSoil-EH dataset (Kmoch et al., 2021),
hich is an an eco-hydrological modelling parameters dataset derived from

the Soil Map of Estonia (Estonian Land Board, 2017). EstSoil-EH consists
of 750,000+ soil units in vector format. The following covariates were
used from the soil data: clay fraction (%), silt fraction (%), sand fraction
(%), rock fraction (%).

Elevation Data
We used LiDAR-based 5 m DEM from the Estonian Land Board (Eston

Land Board, 2022). We created several derivatives from DEM: terrain
wetness index (TWI), terrain roughness index (TRI), LS-Factor (LSF),
and slope.

Land use
We derived land use from the land use basemap created under

project Mapping and Assessment of Ecosystems and their Services in Estonia
(ELME) (Helm et al., 2020) where land use types were aggregated from
various databases.

Drainage
The drainage regime considered both underground tile drainage

and ditch-based drainage systems. The drainage ditches were derived
from the Estonian Topographic Database (ETAK) (Estonian Land Board,
2023a). A 100 m buffer was created around ditches as the drainage
influence zone. The tile drainage information as polygons was obtained
from the official register of drainage systems by the Agricultural Board
of the Ministry of Rural Affairs of Estonia. The two layers were merged,
nd the resulting layer consisted of binary information with a value of
 for drained areas and 0 otherwise.
NDVI
The Normalized Difference Vegetation Index (NDVI) measures the

amount of green vegetation in an area. We derived NDVI for June-
August 2022 composite image of Sentinel 2 using Google Earth Engine.

Table 1 summarizes all datasets and their provenance.

2.2. Methods

First, we constructed one baseline raster and one baseline vec-
tor model. Next, we implemented five spatially-aware RF models by
ugmenting the baseline raster model. Finally, we selected model hy-
erparameters and evaluated model performance using 5-fold cross-

validation.

2.2.1. Baseline models
To provide a baseline for comparison, we trained two RF models

with no added spatial features, only with the described covariates:
(1) a vector-based approach where the raster-based elevation-derived
covariates and NDVI were aggregated to the original vector-based soil
nits of EstSoil-EH (Kmoch et al., 2021) by using zonal statistics and

calculating mean, median and standard deviation. The drainage was
epresented as a percentage of the soil unit’s area, and the land use
s the majority land use type within each soil unit; (2) a raster-based

approach where all original raster covariates (DEM derivatives, land
use, NDVI, drainage) were kept as rasters and original soil data from
ector polygons was converted into the same 10 m raster format. These
odels can be compared to understand the effects of transitioning from

ector-based to raster-based modelling. The baseline raster model will
lso serve as a reference for evaluating the impact of adding spatial

features to the modelling process.
For both models, we converted landuse from a single categorical

eature into five binary ‘‘dummy’’ features (landuse_type_arable,
landuse_type_grassland, landuse_type_forest, landuse
_type_artificial, and landuse_type_wetland).

All raster datasets were co-registered using GDAL Warp (GDAL/OGR
ontributors, 2024) to 10 m resolution, aligning pixels and matching
xtents. A resolution of 10 m was chosen because it is the coarsest
esolution among the available rasters, and upsampling to a finer
esolution would not be appropriate for model-training purposes. For

sources that existed as vectors, we used GDAL vector-to-raster, using
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Fig. 1. Spatial distribution of soil samples in dataset across Estonia.
Table 1
Summary of data features and their origin.

Feature name Description Provenance Original
resolution

Data type

clay Clay fraction (top layer) EstSoil Vector Numeric
silt Silt fraction (top layer) EstSoil Vector Numeric
sand Sand fraction (top layer) EstSoil Vector Numeric
rock Rock fraction (top layer) EstSoil Vector Numeric
twi Terrain wetness index LiDAR DEM 5 m Numeric
tri Terrain roughness index LiDAR DEM 5 m Numeric
slope Slope LiDAR DEM 5 m Numeric
lsf LS-factor LiDAR DEM 5 m Numeric
landuse Land use classification ELME 10 m Dummy
ndvi Mean NDVI, July 2022 Sentinel-2 10 m Numeric
drained Boolean value for drainage ETAK Vector Dummy
soc Soil organic carbon

(% of mass)
LUCAS
+other fieldwork

Point data Numeric
the previously generated rasters as the extent to co-register with the
others. We used Python package rasterio to sample values from the
rasters onto the SOC data points. A summary of descriptive statistics for
all the continuous variables as sampled at SOC observation locations is
shown in Table A.5.

2.2.2. Adding spatial awareness
Coordinates as covariates (XY)
The simplest way to incorporate spatial information into a model

is to include the coordinates of the samples as covariates. This can
potentially be useful if the target variable has a linear (or otherwise)
relationship to easting or/and northing, or as a proxy variable for some
other related covariate such as distance-to-coastline. Still, it does not
inherently provide a way for a random forest to model autocorrelation
between near points and may lead to blocky artefacts in predicted
surfaces (Hengl et al., 2018; Behrens et al., 2018).

We included the X and Y coordinates of the SOC data points in the
model as additional covariates (Fig. 2).

Random Forest Spatial Interpolation (RFSI)
Random forest spatial interpolation (RFSI) is a framework that

considers the nearest observations and their distances to the prediction
location as covariates in a random forest model. Sekulić et al. (2020)
developed RFSI and compared it to other interpolation techniques like
kriging, regression kriging, random forest, and random forest for spatial
prediction (RFsp; Hengl et al., 2018), with three case studies involving
synthetic data, daily precipitation data in Catalonia, Spain and mean
daily temperature data in Croatia. Results showed that RFSI performed
better than most deterministic interpolation techniques and performed
similarly to inverse distance weighting and RFsp.

We augmented the training data with 2 ∗ 𝐾 covariates: 𝐾 features
representing the values of the target variable of the 𝐾 nearest neigh-
bours of the available sampling points, and 𝐾 features representing
3 
the distances to those neighbours. When predicting, these covariates
were also derived from neighbours in the training dataset. We selected
𝐾 = 7 neighbours based on a grid-search test across the 5-15 neighbour
range as recommended by Sekulić et al. (2020), eventually adding 14
additional covariates to the model (Fig. 2). The structure of the training
data is shown in Fig. 2. In this case, n1 is the nearest neighbour in the
training dataset that is not the current sampling point itself.

Buffer distances (BD)
The RFsp prediction framework also uses buffer distances between

observation points to account for spatial autocorrelation. It can provide
predictions that are as accurate and unbiased as kriging but with
several advantages. RFsp is described to not rely on strict statistical
assumptions about the target variable’s distribution or stationarity, to
be flexible in incorporating and extending different covariates, and to
be able to yield more informative maps showing prediction error. Alone
without additional environmental covariates, RFsp can be considered
to produce results similar to ordinary kriging. But it is particularly
designed to create multivariate spatial prediction models for geoscience
applications (Hengl et al., 2018).

We calculated the distance from each sample to every point in the
training data, and then grouped those distances into 𝑁 ordered bins
(per sample) of approximately the same size. A covariate was added to
the model for every point in the training data, with values representing
the bin that point fell into for each sample. We used 𝑁 = 20 bins.

Fig. 2 shows the model’s training data structure. Note that the first
bin is bin 1, and each point is in its own bin 1. Also note that if point 𝑚
is in point 𝑛’s bin 𝑖, point 𝑛 is not necessarily in point 𝑚’s bin 𝑖 as well.

Random Forest Regression Kriging (RFRK)
Kriging is an interpolation technique which fits a mathematical

function, typically a Gaussian process, to a set of sample points. The
weights assigned to the neighbouring points depend on their distance
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Fig. 2. Methods for incorporating spatial structure into random forest models.
and degree of clustering. Nearby points are assigned greater weights
(compared to farther points), while dispersed points are assigned
smaller weights (compared to clustered ones). In this way, the tech-
nique uses spatial autocorrelation in the data to predict values at
unsampled locations.

Kriging and random forests are often used together in ensemble
methods to improve the random forests’ predictions. The typical ap-
proach is Random Forest Regression Kriging, in which the residuals of
the random forest’s predictions are kriged. Then, the kriging surface’s
predictions are added to the random forest results which potentially
increases the accuracy (Fox et al., 2020; Hengl et al., 2017).

To implement random forest regression kriging, we first trained
the baseline raster model, and then used it to make predictions on
its training data. The residuals of these predictions were used to fit a
semivariogram for ordinary kriging (a spherical model, with a nugget
of 25, a sill of 31, and a range of 100,000 m). These residuals were
interpolated across the study area using ordinary kriging with the
calculated semivariogram. When predictions are made, the value of
the kriging surface at that location is added to the baseline model’s
prediction, acting as an error correction (Fig. 2).

Geographically Weighted Random Forest Regression (GWRFR)
Geographically Weighted Regression (GWR) accounts for spatial

nonstationarity in regression models by fitting a regression to each
feature in the dataset that is trained only on the points in that fea-
ture’s neighbourhood, as well as a global model including all training
features (Brunsdon et al., 2010). GWRFR applies the principles of
GWR using random forests as the regression model. This has the
advantage of accounting for spatial nonstationarity in the data while
also handling non-linear relationships between features and the target
variable. Georganos et al. (2021) found that proper neighbourhood size
4 
selection and local model weight can lead to a model with improved
performance over regular RF.

For each sampling point we trained a local random forest model
on the K nearest neighbours of each training sample, in addition to
a global RF model (Fig. 2). Predictions were a weighted average of
the global model’s prediction and the prediction of the nearest local
model to each input sample. We used 𝐾 = 100 neighbours, following
recommendations in Georganos et al. (2021).

2.2.3. Model validation
Each model was evaluated using 5-fold cross-validation with a 80-

20 train-test split ratio. We measured the models’ performance with
three statistical metrics: the coefficient of determination (𝑅2), the root
mean squared error (RMSE), and the mean absolute error (MAE). We
found the hyperparameters shown in Table A.6 using the grid-search
algorithm. These tuned values where found to be optimal for all models
in this study. We also calculated residuals for all the models. Residuals
of predictions on known data points can reveal if spatial autocorre-
lation affects a model’s predictions; a spatial trend in the residuals
indicates the model is systematically better in some areas, implying an
unmodelled spatial relationship (Wadoux et al., 2020a; Kaveh et al.,
2023). Kim (2021) found that the residual spatial autocorrelation of
a model’s predictions correlates with the spatial autocorrelation of
the input and target features, suggesting that incorporating spatial
aspects into a model can improve performance by reducing residual
autocorrelation.

2.2.4. Feature importance and interpretability
An advantage of random forest models is that they are explainable

AI (XAI) and there are several methods that can me used to see what
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Fig. 3. Moran’s I vs. kernel bandwidth by distance in meters for all continuous model features. Kernel bandwith means how far points are away from each other when Moran’s I
is calculated. In general, the further away points are from each other, the lower the similarity between the points which can be also seen on this figure.
are the main contributors to the model and how are they related to each
other. We used Shapley Additive exPlanations (SHAP values) which are
a recent advance in the interpretability of ML models. SHAP values
quantify the contribution of each feature to the model’s prediction for
any given point in a game-theoretic manner. To calculate SHAP values,
one must have a background dataset with 𝐹 number of features (usually
the training dataset, or a subset of it), and a dataset consisting of one or
more samples to be explained. From the background data, a tree of 2𝐹
models will be trained, one for each possible combination of features,
beginning from the empty set. Then, for each sample, a prediction
from every model can be made, and the marginal contribution of each
feature to the model’s prediction can be calculated over the entire
tree (Lundberg and Lee, 2017). This marginal contribution of a feature
to a single prediction is its SHAP value for that prediction.

We used beeswarm plots to visualize all the SHAP values for each
prediction, which were grouped by the models’ features and coloured
according to the value of the feature for each prediction.

2.2.5. Estimating the autocorrelation
To estimate the spatial autocorrelation of each input feature, we cal-

culated the Global Moran’s 𝐼 for several spatial weights matrices, each
based on a kernel density function (KDF) with a different bandwidth
based on regular distance intervals from each observation (Fig. 3).
Plotting Moran’s 𝐼 over these distances allows us to visualize the scale
of each input feature’s spatial autocorrelation.

Values of Moran’s 𝐼 between 0.6 and 1 indicate strong spatial
autocorrelation within distances of 5000 to 10,000 meters from sample
points for different features (Fig. 3). The feature with the strongest
spatial autocorrelation across most bandwidths was silt. Soil organic
carbon percentage was one of the more strongly autocorrelated features
at shorter distances (5000 m and below) but quickly dropped below
other features at longer distances.

2.2.6. Computational performance
Despite increased computational resources, the growing complexity

of models poses challenges for spatial modelling. We assessed computa-
tional time for model predictions. Training spatial models are typically
fast, with only hundreds or thousands of points. However, predic-
tion tasks are computationally intensive, often involving millions of
points/pixels. Therefore, it is relevant to know the cost-effectiveness of
5 
Table 2
Model evaluation metrics (5-fold cross-validation).

Model R2 RMSE MAE

Baseline vector 0.61 7.5 4.46
Baseline raster 0.6 7.5 4.39
XY 0.61 7.4 4.23
RFSI 0.63 7.29 4.31
BD 0.62 7.37 4.27
RFRK 0.61 7.47 4.39
GWRFR 0.6 7.49 4.57

adding spatial aspects to the models and evaluate their computational
time.

For all data processing, modelling, and analysis, we used Python
3.9, with the following packages:

• numpy: for numerical operations (Harris et al., 2020).
• pandas: for data manipulation (Reback et al., 2021).
• geopandas: for spatial data manipulation (Jordahl et al., 2020).
• scikit-learn: for machine learning and data analysis (Pedregosa

et al., 2011). Hunter (2007).
• seaborn: for plotting (Waskom, 2021).
• shap: for SHAP value analysis (Lundberg and Lee, 2017) .
• pykrige: for kriging (Murphy et al., 2022).

For mapmaking, we used QGIS 3.28 (QGIS Development Team,
2023).

3. Results

3.1. General model performance

The results from the cross-validation show minor improvements
from the raster baseline random forest model for methods using spatial
covariates (XY, RFSI, BD), while the models that incorporate spatial
data in an extra step (GWRFR, RFRK) make only negligible improve-
ments at best (Table 2). The best-performing model was RFSI, which
showed a 0.02 improvement in 𝑅2 and a 0.21 decrease in RMSE over
baseline.

Each model was used to predict SOC for the whole of Estonia
at 10 m resolution (Fig. 4), except GWRFR, which did not complete
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Fig. 4. Comparison of predictions by spatial and non-spatial machine learning methods across Estonia. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
successfully. A visual inspection does not enable any clear assessment,
as the modelling results are pretty similar, except that RFSI and BD
seem to have higher values for agricultural regions and forested areas
than the baseline model (showing dark blue rather than lighter blue).
This can be confirmed by consulting the histograms of the models’
prediction distributions in Fig. 5. In the BD and RFSI histograms, the
lower parts of the distributions have shifted towards higher values, and
there are higher peaks between 5% to 20% SOC, which do not exist
in the baseline models nor other spatial models (XY and RFRK). BD
and RFSI also have slightly more values above 20% SOC than baseline
models.

The baseline raster and RFRK models have the most similar distri-
butions to the observed data (though they show a third peak above
40% SOC). The other models, however, show jagged, sharp peaks and
troughs (Fig. 5).

However, predictions made on only validation data do not show
any of these irregularities (Fig. 6). Any differences between model
distributions are minimal.

3.2. Residuals

Plotting of prediction residuals on the testing dataset does not
reveal any notable spatial pattern (Fig. 7). The models appear to be
consistent in which samples are over/underestimated, both in direction
and degree.
6 
After calculating Moran’s I for several lag distances, we can see that
the autocorrelation of the baseline raster model’s prediction residuals is
strong at distances below 10,000 m, then quickly drops (Fig. 8). In other
words, there is a spatial pattern to the model residuals. This indicates
that there indeed may be some spatial autocorrelation in the physical
phenomenon that the baseline raster model has not captured. However,
this autocorrelation is only marginally reduced in the spatial models’
residuals.

3.3. Feature importance

To better understand how each covariate (incl. spatial covariates)
contributes to the models, we calculated SHAP values for the baseline
raster model and the models with spatial information as covariates
(XY, RFSI, BD). The other models (GWRFR, RFRK) were left out of this
calculation because they do not have any explicit spatial covariates for
which to calculate importance.

According to SHAP values, the most important feature for all models
is clay content. The higher clay values result in significantly higher SOC
values up to over 40% clay content (Fig. 9). This can be explained by
the fact that clay was used as a stand-in for peat in the EstSoil dataset
for hydrological modelling purposes (Kmoch et al., 2021). The order
of the rest of the feature importances differed slightly across different
models but among the top five features were always the land use type
arable land and slope. Arable land use is associated with lower values
of SOC, while forest and grassland land use lead the model to predict
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Fig. 5. Distribution of SOC predictions across all of Estonia for each model.
higher SOC. Higher slope values lead to lower SOC values. In all the
spatial models (XY, RFSI, BD), the spatial component also made it to the
top 5 features. For the XY model, the X coordinate is the second most
important covariate, and it is negatively correlated with SOC content.
The Y coordinate is not particularly important to the model, and the
SHAP plot does not show any clear directional relationship between
the Y coordinate value and SOC. In the RFSI model, the value of the
nearest neighbour (neighbor_1_val) is the fifth-most impactful covariate
and positively correlates with SOC.

Plotting SHAP values for each of the BD model’s spatial features
does not provide any insight, as there are hundreds of extra covariates
to consider, and, if buffer distances are important to the model, each
observation location will have a different set of covariates providing
the most important information. However, because SHAP values are
additive, they can be summed across all the buffer covariates to de-
termine the contribution of the features as a group to the model’s
predictions. In this case, colour becomes a meaningless quality of the
plot, because it just represents the sum of the buffer distance column
values as intensity, but not the direction of correlation. However, the
importance of buffer distances in general can be identified which in this
case is the second most important feature.

To better understand and explore the details of the spatial variation
in the prediction, we selected four sites from different regions of Estonia
with different land use:

• Nõva, northwest Estonia (mainly forested with wetlands and flat)

• Rakvere, northeast Estonia (mainly arable and flat)
• Lavassaare, southwest Estonia (mainly wetland and flat)
• Valgjärve, shoutheast Estonia (mixed land use and hilly)

Comparisons between the baseline vector model, baseline raster
model, and all spatial models for Nõva site are shown in Fig. 10 and
the most influential model variables for Nõva site are shown in Fig. 11.
Rakvere, Lavassaare and Valgjärve are shown in appendices A.12–A.15.
All detailed study areas show greater spatial variation in SOC values in
7 
the raster models (including spatial models) compared to the baseline
vector model. The higher level of spatial variation in raster models
is likely due to the topographic parameters (TWI, TRI) that capture
the spatial variation of elevation in more detail. However, the most
important feature determining the dominant spatial pattern is clearly
clay content that originates from the vector map.

3.4. Computation time

Model training times on a consumer notebook PC were negligible
(on the order of several seconds) for all models except BD and GWRFR.
BD adds hundreds of extra covariates to the model and takes approxi-
mately 40 s to train. GWRFR trains 100 sub-models. This takes about
60 s. Prediction times, however, are much greater, as predictions must
be made for approximately 500 million raster pixels for all of Estonia.

After the vector baseline model (approx 800,000 polygons), the
baseline raster model is the fastest, taking 1 h and 21 min to predict
(Table 3). XY, RFSI, and RFRK are similar to the baseline raster, running
20-30 min longer due to extra computational steps, and in the case
of XY and RFSI, extra model features. BD, containing hundreds of
additional features, takes significantly longer to make predictions, at
4 h and 13 min. GWRFR was not calculated across the entire study
area, as it was estimated to take up to 300 h to predict on the available
hardware. However, given enough resources, the task could potentially
be parallelized to make prediction times manageable.

4. Discussion

We implemented five spatially-aware random forest models to en-
hance SOC predictions and account for spatial autocorrelation. Our
results demonstrated that incorporating spatial covariates into predic-
tive models of soil organic carbon resulted in only minor improvements
over the baseline random forest model, with the RFSI model performing
best, achieving a 0.02 increase in R2 and a 0.21 decrease in RMSE.
SHAP values highlighted clay content as the most important factor
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Fig. 6. Distribution of SOC predictions for each model on observed/testing data.
Table 3
Time for each model to make predictions across the entire study area, and associated
hardware.

Model Time CPU count RAM (GB)

Baseline vector 22 s 8 64
Baseline raster 1 h 21 m 16 168
XY 1 h 45 m 16 148
RFSI 1 h 43 m 16 160
BD 4 h 13 m 16 192
RFRK 1 h 51 m 16 260

influencing SOC, followed by land use types and slope. Additionally,
site-specific analyses demonstrated that raster models captured greater
spatial variation in SOC than the baseline vector model, largely due
to topographic factors. While the baseline raster model was the fastest
to predict, BD and GWRFR models required significantly more compu-
tation time, underscoring the balance between model complexity and
practicality for large-area studies.

4.1. Challenges in adding spatial structure

RFSI emerged as the top performer in capturing spatial structure
and improving model accuracy on validation data, followed by the BD
8 
and XY models. However, the RFSI and BD models’ usefulness beyond
validation data is questionable, as they appear to overfit when applied
on a broader scale, resulting in unnatural SOC prediction distributions
characterized by higher double peaks (Fig. 5). Meyer et al. (2019)
warn that highly autocorrelated spatial proxies can lead to significant
overfitting in this context and create artefacts in the prediction. In our
case, although there was a geographical overlap between the sampling
and prediction area, the sampling points distribution may still have
been too dispersed to prevent some extrapolation entirely. This could
have been the reason for slightly too high values in wetlands and forests
(double peaks).

The GWRFR model, despite being computationally intensive, does
not significantly outperform other models and struggles with capturing
local spatial effects, possibly due to its large bandwidth. Meanwhile,
the RFRK model shows minimal improvement over the baseline, with
its kriging surface generated from training data residuals producing
predictions that closely resemble the baseline model, offering little
added value.

Therefore, we can say that overall improvements that came with
spatial machine learning strategies in this study are small and show
only a small decrease in residual autocorrelation. Several previous
studies have shown that adding a spatial aspect to random forest
models improves cross-validation results (Hengl et al., 2018; Sekulić
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Fig. 7. Spatial distribution of residuals of predictions on testing data (all folds merged) for each model.

Fig. 8. Moran’s I vs. distance plot for raster model residuals.
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Fig. 9. SHAP values for all models.
et al., 2020; Georganos et al., 2021; Fox et al., 2020), and can reduce
autocorrelation in prediction residuals (Beale et al., 2010; Kim, 2021)
which is somewhat surprising that both effects are only minor here.
However, Beale et al. (2010) observed that even well-fitted spatial
models may have residual autocorrelation and it does not necessarily
indicate a problem.

One potential explanation for the limited effect observed here is
the spatial scale of the autocorrelation phenomenon. Although there is
some autocorrelation among model inputs and SOC at short distances
(less than 5 km), it generally involves only a few very near neighbours
(Fig. 3). Georganos et al. (2021) mention that, for geographically
weighted regression, the size of the neighbourhood used for training lo-
cal models ‘‘can be described as the operational scale of the relationship
which includes just enough data points to capture the inherent localities
[of the modelled process] while at the same time rejecting/reducing
10 
unnecessary training data that come from locations afar, that might be
considered as noise to the model’’. This makes sense in relation to the
nature of machine learning, which generally requires a large number
of samples to be effective. It follows, naturally, that if there are not
enough data points to capture inherent localities while rejecting noise,
then effective modelling will be hard. Moreover, Milà et al. (2024)
emphasize that Random Forest models incorporating spatial proxies are
not well-suited for extrapolating to new areas, especially when there is
a lack of geographical overlap between the sampling and prediction
areas.

Neighbourhood size is critical to the effectiveness of spatial machine
learning and may be important beyond just its implications for geo-
graphically weighted random forests; however, it can also be applied
more broadly to other types of spatial ML models. In this case, the scale
of the autocorrelation in soil organic carbon content is smaller than
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Fig. 10. Comparison of predictions by spatial and non-spatial machine learning methods (northwest Estonia, Nõva), with orthophoto (Estonian Land Board, 2022).
what can be captured given the density of the available samples. This
would apply particularly to the buffer distances model (as only ∼0.05%
of the additional covariates are autocorrelated to any given sample)
and geographically weighted regression (because there are not many
autocorrelated samples to build local regression models from).

Another possibility is that the relatively small amount of spatial
autocorrelation of SOC could have been largely captured in the base-
line model by some combination of the other covariates. This idea is
supported by the fact that in the spatial models, the spatial covariates
showed some importance in SHAP value analysis above other useful
environmental covariates. In contrast, the model performance did not
improve significantly. This could imply that the non-spatial covariates
had already captured some spatial autocorrelation, and when actual
spatial covariates were introduced to the model, they depressed the
influence of non-spatial covariates. On the other hand, this should
also raise cautiousness because spatial covariates can act as pseudo-
covariates which are meaningless and not related to soil-forming factors
and processes Wadoux et al. (2020b). Further studies to confirm this
11 
idea might involve systematically removing (combinations of) environ-
mental covariates from the spatial models and the baseline model to
see if any are necessary to baseline model performance but not spatial
model performance.

In this study, the scale of autocorrelation in SOC was smaller than
what the available sample density could capture, which could explain
the double-peak effects observed in the RFSI and BD models. These
models attempt to exploit spatial autocorrelation by fitting random
forest models to spatial structures alongside environmental covariates.
However, when prediction points are too distant from training data
points, the models may rely too heavily on spatial variables, leading
to less accurate predictions. To further explore this issue, the concept
of Areas of Applicability (AOA, Meyer and Pebesma (2021)) could be
used, allowing for the comparison of prediction distributions within
and outside the AOA. In addition, the availability of field observations
for soils and properties remains a challenge in modelling (Safaee et al.,
2024), but the performance of the final predictive model largely hinges
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Fig. 11. Maps of baseline raster predictions and influential model variables (northwest Estonia, Nõva).
on the quality of the samples, specifically their size and representative-
ness, to accurately reflect real-world variability (Bouasria et al., 2023).
Therefore, it is crucial to increase the density of SOC measurements,
especially in areas experiencing high spatial variability, but at the same
time, consider sampling strategy.

4.2. Computational considerations and validation challenges

The raster models showed much more detail than can be achieved
by predicting the original soil units using vector model (Fig. 10).
Predictions made on data aggregated to polygonal vector units are
limited to the discrete shape and size of those units and it is not
possible to account for smooth transition of environmental variables.
The outlines of the original soil units are still easily discernible in many
places because data for clay, sand, silt, and rock fractions have been
12 
rasterized from vector polygons and thus are represented as uniform
within soil units. While the results of the raster-based models provide
a higher level of spatial detail that is not available in vector-based
models, there are some necessary considerations.

Firstly, in the current study, it was not possible to validate the detail
of the output maps separately from the model itself, because there was
no validation SOC data available in such spatial detail. In the vector-
based model, environmental covariates aggregated over entire soil units
are used to make predictions of what SOC is like in those 750,000
soil units generally. In the raster-based models, the values of these
covariates are known at specific 10 m 𝑥 10 m locations, and predictions
are made at hundreds of millions of them. For better validation, more
SOC measurements are needed preferably on carefully selected study
sites to capture the local SOC variation.
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Secondly, the scale of computation necessary to produce raster
redictions at this level of detail is considerable. Calculating predictions
or the entire country required several hours of parallel computing

time on a large cluster of CPUs. This kind of computation is becoming
increasingly accessible and could be accelerated by switching to GPU-
oriented computation, so it is not an insurmountable obstacle in gen-
eral. However, computational complexity is still an important consid-
eration when working with spatial data in machine learning, especially
because data size increases quadratically with finer resolution.

Ensemble-based methods for incorporating spatial data into ML
odels, such as GWRFR, are particularly compute-hungry, and GWRFR

did not show any clear advantage over other models during cross-
alidation. Using it to generate a map of all of Estonia would have

required an estimated 300 h of computing time on available resources,
so this step of analysis was skipped. XY and RFSI showed good perfor-

ance, and they were computationally significantly less demanding.

5. Conclusions

In this study, we investigated whether SOC predictions could be
improved by incorporating spatial autocorrelation into random forest
models. Our findings indicate that spatial autocorrelation minimally
enhances prediction accuracy. Among the five models tested, the RFSI
method emerged as the most effective, which suggests that leveraging
the value and proximity of neighbouring observations can effectively
capture spatial dependencies, offering a robust approach for enhancing
predictive performance in SOC modelling. We also examined whether a
ontinuous raster approach delivers more accurate spatial distributions
f SOC predictions compared to traditional vector methods. The results
emonstrated that raster-based models provided finer spatial detail and
reater variability in SOC predictions across Estonia, as they were able
o utilize covariate values at precise 10 m 𝑥 10 m locations. This
nhanced spatial resolution allows for a more nuanced understanding
f SOC distribution, which is less feasible with aggregated vector-based
redictions. However, the limitation in validation data at such spatial
cales underscores the need for more detailed SOC measurements to
onfirm these results.

This study not only contributes to the specific field of SOC modelling
but also provides valuable insights about spatial aspects in modelling
that can improve environmental mapping practices in general. Most
of the environmental variables exhibit more or less spatial autocorre-
ation; therefore, it is relevant to consider this when making spatial

predictions of these variables. Our study increases the awareness of
spatial dependencies in the environmental data which can increase the
prediction accuracy but there is also a danger of overfitting. This also
underscores the importance of high-resolution validation data which in
turn highlights a broader necessity in environmental science to invest
in comprehensive data collection efforts to reinforce the validity of

odelling, especially machine learning approaches.
In summary, this study supports the integration of spatial autocorre-

lation into random forest models as a viable means of improving SOC
redictions. However, the validity of the detailed spatial predictions

remains uncertain due to insufficient validation data. This underscores
the need for ongoing refinement of modelling techniques and collecting
high-resolution validation data to advance geospatial SOC analysis.
Future research should focus on evaluating these spatially aware mod-
els using high-density validation data from field observations coupled
with strategic spatial sampling. Additionally, comparative analyses of
model predictive performance within and outside specific Areas of
Applicability (AOAs) will provide valuable insights into their reliable
application contexts.
13 
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Appendix

See Figs. A.12–A.17 and Tables A.4–A.6.

Table A.4
Land use classes, and distribution of SOC samples across the land use
classes.

Land use type Numerical code Num. of SOC samples

grasslands 1 253
wetlands 2 36
forests 3 415
arable 4 214
artificial 5 51

Table A.5
Descriptive statistics for all variables.

Feature name Mean Std. Dev. Min. Median Max.

soc 9.214 12.012 0 4.633 60
slope 1.573 2.528 0.017 0.804 26.49
twi 9.489 1.639 3.621 9.791 13.307
tri 0.119 0.169 0.003 0.066 1.806
lsf 0.241 0.683 0 0.084 9.76
ndvi 0.777 0.124 0.011 0.81 0.936
clay 17.553 18.342 0 15 70
sand 67.489 23.737 15 65 100
silt 14.959 9.778 0 15 50
rock 7.757 15.699 0 0 85
drained 0.258 0.438 0 0 1
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Fig. A.12. Comparison of predictions by spatial and non-spatial machine learning methods (detail, northeast Estonia, Rakvere), with orthophoto (Estonian Land Board, 2023b).
Table A.6
Hyperparameters for all models in this study.

Hyperparameter Value

n_estimators 766
max_features 1.0
max_depth 20
min_samples_split 2
min_samples_leaf 4
bootstrap True
14 
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Fig. A.13. Maps of baseline raster prediction and influential model variables (detail, northeast Estonia, Rakvere).
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Fig. A.14. Comparison of predictions by spatial and non-spatial machine learning methods (detail, southeast Estonia, Valgjärve), with orthophoto (Estonian Land Board, 2023b).
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Fig. A.15. Maps of baseline raster prediction and influential model variables (detail, southeast Estonia, Valgjärve).
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Fig. A.16. Comparison of predictions by spatial and non-spatial machine learning methods (detail, southwest Estonia, Lavassaare), with orthophoto (Estonian Land Board, 2023b).
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Fig. A.17. Maps of baseline raster prediction and influential model variables (detail, southwest Estonia, Lavassaare).
19 
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