

Authors: Carolina Jativa¹, Susana Bernal¹, Gerard Rocher-Ros², Xavier Peñarroya¹, José L. J. Ledesma³, Anna Lupon¹ ¹Center for Advanced Studies of Blanes (CEAB-CSIC). ²Integrated Science, Umeå University. ³Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences - Spanish National Research Council (MNCN-CSIC).

Study Site & Methodology Objective Identify the main drivers of CO_2 and O_2 concentrations in an intermittent Mediterranean headwater stream and assess how their relative importance shifts under contrasting hydrological conditions. **Expectation 1 - Low-Flow Conditions `**1:-1 Groundwater inputs Anaerobic respiration Carbonate dissolution length Chemoautotrophy offset **Hydrological Regimes** Supersaturation CO₂ departure (µmol L⁻¹) • Main driver: stream aerobic metabolism. Long and stretch CO_2-O_2 ellipses close to 1:-1 (yellow ellipse) • Main driver: stream anaerobic metabolism. Long and wide CO₂-O₂ ellipses, far from 1:-1 (brown ellipse) Q (L s⁻¹) **Expectation 2 - High-Flow Conditions** \rightarrow **Regime I:** 0.1 – 1.8 L s⁻¹ **`**\1:-1 Daily CO₂:O₂ departure Groundwater inputs Anaerobic respiration Carbonate dissolution length Chemoautotrophy width offset -100 Undersaturation Supersaturation -200 CO₂ departure (µmol L⁻¹) • Main driver: groundwater inputs. Short and wide CO2-O2 ellipse, -300 far from both 1:-1 and 0:0 (atmospheric equilibrium) (dark purple ellipse) • Main driver: reaeration. Short and stretched CO2-O2 ellipses, close to both 1:-1 and 0:0 (light purple ellipse) CO_2 departure (µmol L⁻¹)

Inferring fluvial metabolism from CO₂-O₂ paired measurements across contrasting hydrological conditions

Colors represent days under different hydrological conditions \rightarrow **Regime II:** 1.9 – 5.1 L s⁻¹ \rightarrow Regime III: 5.2 – 29 L s⁻¹ \rightarrow Regime IV: 5.6 – 268 L s⁻¹

headwater stream

regime

CO₂-O₂ Drivers

- Length: Increases with light inputs and decreases with minimum daily O₂ concentrations, suggesting strong GPP influence on CO₂–O₂ dynamics.
- Width: Increases with light inputs and decreases with minimum daily O₂ concentrations, suggesting anaerobic CO₂ production coupled to GPP.
- Offset: Increases with diel variations in temperature and ecosystem respiration (negative NEP), suggesting aerobic CO₂ production.

CO₂-O₂ and NEP Patterns

- Length and Width: Lower and more stable as discharge increases, reflecting lower influence of the stream metabolic fingerprint at high flows
- Offset: More stable as discharge increases, reflecting the importance of external groundwater inputs at high flows.
- NEP: Declines with discharge, driven by increased ecosystem respiration. At very low flows, NEP sharply diverges from the trend, becoming highly negative.

• At extreme low flows (Regime I and II), in-stream processes drive CO₂-O₂ dynamics: long ellipses suggest

• At high flows (Regimes III and IV), physical processes drive CO2-O2 dynamics: short and stretched ellipses suggest strong air-water exchange rates. Yet, relatively large offsets suggest CO2 inputs and high respiration