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Geophysical Characteristics of Breakup Magmatism in the Southern South China Sea Margin
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ABSTRACT The South China Sea Margin Is a good natural laboratory

featuring polyphase rifting processes that began in the late Eocene and ended late a ¢ e f o _ _ —

Miocene. The breakup first occurred In the East Sub-basin, and the expansion (1):A MCS 1133'021h0n naniu o Ealt E3 ga}BSC anbd anse  an6 amea  anob EMCS 1159'85 3 %:E anse aﬁﬁé CFT-S ‘se

direction shifted from a north-south orientation to a northwest-southeast orientation| 2 e R e oo Znangnaniltyue Faut “ il |3-

around 23 Ma, with the propagation of new oceanic crust forming the Southwest| [E&* _ 2 & V7 £%% i: Mo\ g:

Sub-basin. The involvement of magmatic activity is still not fully understood, nor is| " R = - g r e || 6 - oo

its influence during the breakup process of the Southwest Sub-basin. This study A ‘ ) .FF,’i“ il S-‘ = Bt . . ; o

investigates the crustal structure and the magmatic activity by integrating] ™| % ik S IEE i E| o | I |5t — e —

multichannel seismic (MCS) profiles and shipborne gravity around Taiping Island| 89;‘ ——— ——— ; ; il Fa“;MS%; 102 — GMa:oader-é;timatg¢

(Spratly Islands). Gravity simulation results reveal the presence of a high-density| “~ i 2 g | 20 - i " b 1 40 | Col Grauity (Setemic Mopoy e e estmete

igneous body in the continent-ocean transition (COT) east of Taiping Island (Spratly| & #&8 40\ it i g "“""'-""'*r".z.'.',”,»fmé’{_% ~ -’ ol ' Mﬁ' b th’

Islands). Areas with under-estimated gravity values in the model also imply that a| =~ FEeZzi st Ny 40 - | ™ fl;.f’w L' AN W,/ WY\ WS-

high-density lower crust may exist. Therefore, this study suggests distinct magmatic 7 =7 ' Nl el Ve

Intrusions within the South China Sea crust during the spreading of the southwestj w~{ 4 f;ﬁ E’ “ 10°N _mga'ObsGrav_ity —  Under-estimate ¢ | O~ ObsGravity — Under-estimate ¢ 1 4ol N RMS

sub-basin. The formation of these high-density bodies may provide more insights to] *0 [ cal Gravity == Over-estimats ' ' | [ LSOy, == Overestinat ) | ] | | e , Seiemic Moho: 1943
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discover magmatism involving the ridge propagation process. s | | km Seawater 1.03 l?m Seawater 1.03 g/cm? P —— ) Seawater 1.03 glcm?
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p Figure 1. Elevation with rifted basins. The bathymetric map has a non-linear color bar to assist in
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highlighting certain features. The white dashed lines is Zhongnan-Liyue Fault (Fang et al., 2023). The| NwprB: NW Palawan Basin, PK: Phu Khanh Basin, PRMB: Pearl River Mouth Basin, QDN: | |10

continent-ocean transition (COT) distribution is shown in the yellow band (Song et al., 2019). The gray | Qiongdongnan Basin, TXN: Taixinan Basin, ZJN: Zhongjiannan Basin, MB: Macclesfield Bank
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(Zhongsha Islands), SI: Spratly (Nansha) Islands, PB: Penxi Bank, RB: Reed (Liyue) Bank. ESB:

solid lines indicate the mid-ocean ridge locations of the ESB and SWSB (Briais et al., 1993). East Sub-Basin, NWSB: Northwest Sub-Basin, SWSB: Southwest Sub-Basin.
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