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Abstract

The Automatics in SpAce exPloration (ASAP) project has as a goal the design and development

of Machine Learning (ML) algorithms for the automation of operations to be implemented on the

on-board processors of space missions. In the framework of ASAP, a set of ML algorithms for on-

board science operations of space missions have been developed/optimized on consumer-grade

computing systems to be further selected for porting of existent MLmodels directly on an FPGA

prototype. In more detail, algorithms pertaining to four main use cases have been considered:

the autonomous triggering of special measurement modes and the selective downlink of plasma

environment parameters; the advanced on-board data analysis of three-dimensional particle dis-

tribution functions; the on-board analysis of solar images; the on-board prediction capability of

SEP related hazards. Here, we give a description of four algorithms, for further algorithms go to

see also “Gonidakis, P., Carella, F., Miloshevich, G., and Poedts, S.: Efficient Segmentation and

Clustering of Solar Coronal Structures: A Comparison of U-Net and Classical Computer Vision

Techniques Using SDOData, EGUGeneral Assembly 2025, Vienna, Austria, 27Apr–2May 2025,

EGU25-9849”. ASAP has received funding from the HORIZON Research and Innovation Action

of the EU (GA no.101082633)

Burst triggering and selective downlink algorithms

Modern spacecraft generate vast amounts of data, often exceeding downlink capacity, especially

in multi-spacecraft missions. To address this, onboard AI processing can be used to optimize data

collection and transmission by identifying regions of scientific interest in space and prioritizing

high-value data. Two primary use cases for AI-driven data prioritization are:

Selective Downlink of Scientific Data:

A Convolutional Neural Network (CNN) classifies and prioritizes data for transmission,

reducing storage demands and improving efficiency, particularly for deep-space missions.

Region of Interest (ROI) Identification for High-Rate Data Collection:

AI can detect high-value data in key regions such as the magnetopause and bow shock,

conserving resources and capturing rare events.

The models

CNN model: The CNN model used for classification follows the topology of Olshevsky et al.

(2021) [1], categorizing plasma regions into solar wind (SW), ion foreshock (IF),

magnetosheath (MSH), or magnetosphere (MSP). This model has been optimized significantly

by reducing its size while maintaining prediction accuracy (Ekelund et. el. 2024 [2]): achieves

a 95%–98.9% size reduction with minimal accuracy loss, enabling faster inference and lower

power consumption, Figure 1a.

Short Time Fourier Transforms model: A second approach leverages image analysis to detect

transition regions and trigger burst mode acquisitions. This method applies Short Time

Fourier Transforms (STFT) to time-series observations, forming multi-channel images for

analysis. Previous work (Breuillard et al., 2020 [3]) demonstrated the effectiveness of this

method when applied to MMS data, Figure 1b.

(a) Region of interest detection with baseline CNN applied to

MMS data.

(b) MMS dayside classification. Breuillard et al, 2020 [3]. Work

part of AIDA.

Figure 1. Results from the Neural Network models

On-board analysis of particle velocity distribution functions

Velocity Distribution Functions (VDFs) provide key macroscopic plasma properties such as den-

sity, velocity, and temperature. VDFs must be defined for each particle species. Ion detectors

measure directional distributions and energy-per-charge (E/q) spectra, leading to ambiguities in

species identification. In the solar wind, protons and alpha particles can be separated post-

measurement using fitting procedures, though strong overlaps can hinder accuracy. We propose

clustering VDFs using Gaussian Mixture Models (GMMs) to distinguish overlapping ion popu-

lations. Here, we present an application to the solar wind sampled by Helios 2 on 16 April

1976, when the spacecraft was at a distance of 0.29 au from the Sun. We separated the VDF

into protons and alpha particles and computed density, velocity, and temperature. These can be

compared to the time series available on the CDAWeb repository (https://cdaweb.gsfc.nasa.gov).

As can be seen from the Figure 2, the proton moments are similar (differences can also be due

to differences in moments computation).

(a) Proton moments of 16 April 1976 from Helios 2, time

series from CDAWeb

(b) Proton moments of 16 April 1976 from Helios 2, our results

Figure 2. Proton moments of 16 April 1976 from Helios 2

SEP prediction algorithm: ESPERTA on board

ESPERTA (Empirical model for Solar Proton Events Real Time Alert) is a forecasting method de-

signed to predict the occurrence of an SEP event 10 minutes after the peak of any flare of class

greater or equal to M2 occurring on the Sun. To achieve this, ESPERTA is based on three vari-

ables:

Helio-longitude of the flare;

Time-integrated Soft X-Ray (SXR) flux;

Time-integrated 1 MHz radio flux.

Previously optimized for forecasting SEPs with peak flux ≥ 10 pfu (≥ S1 storms) [4], we now

apply machine learning techniques to enhance early warnings also for high-intensity SEPs (≥
100 pfu, ≥ S2 storms) [5]. In order to use ESPERTA on board spacectraft at any location in

the Heliosphere, we adapted and validated ESPERTA by using particle data from STEREO-A. We

compiled a catalogue of SEP events observed by STEREO-A from 2009 to 2022, where >10
MeV proton flux exceeded 10 pfu (see Figure 3 fo results).

(a) Proton flux at >10 MeV and > 30 MeV obtained from the

STEREO-A LET and HET STEREO-A data for the 28 March

2022 SEP event. The Cyan horizontal line indicates the 10 pfu

threshold used to define a SEP event.

Metric Value (%)

Probability of Detection (POD) 88

False Alarm Rate (FAR) 32

Table 1: Performance Metrics
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(b) Best scores for the optimal threshold of 0.36

Figure 3. Results from ESPERTA

Solar flare prediction using CNNs

We develop a system of independent CNN in order to to predict soft X-ray flux using full disk

images of the sun obtained from the Solar Dynamics Observatory (SDO). Each CNNwill process

inputs from different SDO channels (see Figure 4).

Figure 4. An example of a learning scheme using independently trained CNNs

We have explored a simple CNN architecture, while using a specialized loss function to improve

the prediction of the extremes of the X-ray flux, a continuous quantity. It is a combination of

Bernoulli random variable cross-entropy and mean square error:

N∑
n=1

[
−1(Q = 0)w1r log(1 − Q̂) + 1(Q 6= 0)w2(I)

(
−r log Q̂ + (I − Î)2

)]
(1)

Here, indicator functions are specified for Q = 0 - no flare and Q = 1 - flare cases. “I” stands for

intensity of the soft X-ray flux, and other parameters areweights chosen based on the distribution

of the soft X-ray flux variable, which follows the Cauchy distribution [6]. Preliminary results on

data from May 2012 have shown promising potential for our method (see Figure 5)

Figure 5. Performance of the detection tool, trained on preliminary 9 month long dataset and tested on November

- December
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